

Welcome to CloudStack Documentation !

[image: _images/acslogo.png]

Avertissement

We are in the process of changing documentation format as well as hosting mechanism.
Please be patient with us as we migrate our entire documentation to this new setup.

Introduction

	Concepts and Terminology
	What is Apache CloudStack?

	What can Apache CloudStack do?

	Deployment Architecture Overview

	Cloud Infrastructure Concepts

	CloudStack Terminology

Navigating the docs

Now that you have gone over the basic concepts of CloudStack you are ready to dive into the installation and operation.

See the Installation Guide [http://docs.cloudstack.apache.org/projects/cloudstack-installation]

See the Administration Guide [http://docs.cloudstack.apache.org/projects/cloudstack-administration]

See the Release Notes [http://docs.cloudstack.apache.org/projects/cloudstack-release-notes]

Below you will find very specific documentation on advanced networking which you can skip if you are just getting started.

Developers will also find below a short developers guide.

Advanced Networking Guides

	The Nicira NVP Plugin
	Introduction to the Nicira NVP Plugin

	Configuring the Nicira NVP Plugin

	Using the Nicira NVP plugin with VPC

	Troubleshooting the Nicira NVP Plugin

	Revision History

	The MidoNet Plugin
	Introduction to the MidoNet Plugin

	Using the MidoNet Plugin

	Revision History

	The VXLAN Plugin
	System Requirements for VXLAN

	Linux Distributions that meet the requirements

	Configure PRODUCT to use VXLAN Plugin

	The OVS Plugin
	Introduction to the OVS Plugin

	Configuring the OVS Plugin

	Using the OVS plugin with VPC

	Revision History

	IPv6 Support in CloudStack
	Prerequisites and Guidelines

	Limitations of IPv6 in CloudStack

	Guest VM Configuration for DHCPv6

	Configuring AutoScale without using NetScaler
	What is AutoScaling?

	Hypervisor support

	Prerequisites

	Configuration

	Disabling and Enabling an AutoScale Configuration

	Updating an AutoScale Configuration

	Runtime Considerations

Developers Guide

	CloudStack Installation from Source for Developers
	Prerequisites

	Installing from Source

	Using the Simulator

	Using DevCloud

	Building Packages

	The CloudStack API

	Testing the AWS API interface

	Conclusions

	Programmer Guide
	The CloudStack API

	Event Types

	Time Zones

	Plugins
	Storage Plugins

	Third Party UI Plugins

	Allocators
	Implementing a custom HostAllocator

	Implementing a custom StoragePoolAllocator

	Deploying CloudStack with Ansible
	What is Ansible

	There’s already Chef and Puppet, so what’s the fuss about Ansible?

	So let’s see something

	Installing Ansible

	Playbooks

	Modules

	Planning

	MySQL

	CloudStack Management server service

	System VM Templates:

	Bringing it all together

	How is this example different from a production deployment?

	Acknowledgements

Concepts and Terminology

What is Apache CloudStack?

Apache CloudStack is an open source Infrastructure-as-a-Service platform that
manages and orchestrates pools of storage, network, and computer resources to
build a public or private IaaS compute cloud.

With CloudStack you can:

	Set up an on-demand elastic cloud computing service.

	Allow end-users to provision resources

What can Apache CloudStack do?

Multiple Hypervisor Support

CloudStack works with a variety of hypervisors and hypervisor-like technologies. A single
cloud can contain multiple hypervisor implementations. As of the current release CloudStack
supports:

	vSphere (via vCenter)

	KVM

	Xenserver

	LXC

	BareMetal (via IPMI)

Massively Scalable Infrastructure Management

CloudStack can manage tens of thousands of physical servers installed in geographically
distributed datacenters. The management server scales near-linearly eliminating the need
for cluster-level management servers. Maintenance or other outages of the management server
can occur without affecting the virtual machines running in the cloud.

Automatic Cloud Configuration Management

CloudStack automatically configures the network and storage settings for each virtual machine deployment.
Internally, a pool of virtual appliances support the operation of configuration of the cloud itself. These
appliances offer services such as firewalling, routing, DHCP, VPN, console proxy, storage acces, and
storage replication. The extensive use of horizontally scalable virtual machines simplifies the installation
and ongoing operation of a cloud.

Graphical User Interface

CloudStack offers an administrators web interface used for provisioning and managing the cloud, as well as
an end-user’s Web interface, used for running VMs and managing VM templates. The UI can be customized to
reflect the desired service provider or enterprise look and feel.

API

CloudStack provides a REST-like API for the operation, management and use of the cloud.

AWS EC2 API Support

CloudStack provides an EC2 API translation layer to permit the common EC2 tools to be used in the use of
a CloudStack cloud.

High Availability

CloudStack has a number of features to increase the availability of the system. The Management Server
itself may be deployed in a multi-node installation where the servers are load balanced. MySQL may be
configured to use replication to provide for failover in the event of database loss. For the
hosts, CloudStack supports NIC bonding and the use of separate networks for storage as well as iSCSI Multipath.

Deployment Architecture Overview

Generally speaking, most CloudStack deployments consist of the management server and the resources to be managed.
During deployment you inform the management server of the resources to be managed, such as IP address blocks, storage devices,
hypervisors, and VLANs.

The minimum installation consists of one machine running the CloudStack Management Server and another machine
to act as the cloud infrastructure (in this case, a very simple infrastructure consisting of one host running
hypervisor software). In its smallest deployment, a single machine can act as both the Management Server and
the hypervisor host (using the KVM hypervisor).

[image: _images/basic-deployment.png]
A more full-featured installation consists of a highly-available multi-node Management Server installation and
up to tens of thousands of hosts using any of severa networking technologies.

Management Server Overview

The management server orchestrates and allocates the resources in your cloud deployment.

The management server typically runs on a dedicated machine or as a virtual machine. It controls allocation of
virtual machines to hosts and assigns storage and IP addresses to the virtual machine instances. The Management
Server runs in an Apache Tomcat container and requires a MySQL database for persistence.

The management server:

	Provides the web interface for both the adminstrator and end user.

	Provides the API interfaces for both the CloudStack API as well as the EC2 interface.

	Manages the assignment of guest VMs to a specific compute resource

	Manages the assignment of public and private IP addresses.

	Allocates storage during the VM instantiation process.

	Manages snapshots, disk images (templates), and ISO images.

	Provides a single point of configuration for your cloud.

Cloud Infrastructure Overview

Resources within the cloud are managed as follows:

	Regions: A collection of one or more geographically proximate zones managed by one or more management servers.

	Zones: Typically, a zone is equivalent to a single datacenter. A zone consists of one or more pods and secondary storage.

	Pods: A pod is usually a rack, or row of racks that includes a layer-2 switch and one or more clusters.

	Clusters: A cluster consists of one or more homogenous hosts and primary storage.

	Host: A single compute node within a cluster; often a hypervisor.

	Primary Storage: A storage resource typically provided to a single cluster for the actual running of instance disk images. (Zone-wide primary storage is an option, though not typically used.)

	Secondary Storage: A zone-wide resource which stores disk templates, ISO images, and snapshots.

Networking Overview

CloudStack offers many types of networking, but they typically fall into one of two scenarios:

	Basic: Most analogous to AWS-classic style networking. Provides a single flat layer-2 network where guest isolation is provided at layer-3 by the hypervisors bridge device.

	Advanced: This typically uses layer-2 isolation such as VLANs, though this category also includes SDN technologies such as Nicira NVP.

Cloud Infrastructure Concepts

Regions

To increase reliability of the cloud, you can optionally group resources into multiple geographic regions. A region
is the largest available organizational unit within a CloudStack deployment. A region is made up of several
availability zones, where each zone is roughly equivalent to a datacenter. Each region is controlled by its own
cluster of Management Servers, running in one of the zones. The zones in a region are typically located in close
geographical proximity. Regions are a useful technique for providing fault tolerance and disaster recovery.

By grouping zones into regions, the cloud can achieve higher availability and scalability. User accounts can span
regions, so that users can deploy VMs in multiple, widely-dispersed regions. Even if one of the regions becomes
unavailable, the services are still available to the end-user through VMs deployed in another region. And by
grouping communities of zones under their own nearby Management Servers, the latency of communications within
the cloud is reduced compared to managing widely-dispersed zones from a single central Management Server.

Usage records can also be consolidated and tracked at the region level, creating reports or invoices for each geographic region.

[image: _images/region-overview.png]
Regions are visible to the end user. When a user starts a guest VM on a particular CloudStack Management Server,
the user is implicitly selecting that region for their guest. Users might also be required to copy their private
templates to additional regions to enable creation of guest VMs using their templates in those regions.

Zones

A zone is the second largest organizational unit within a CloudStack deployment. A zone typically corresponds to a
single datacenter, although it is permissible to have multiple zones in a datacenter. The benefit of organizing
infrastructure into zones is to provide physical isolation and redundancy. For example, each zone can have its
own power supply and network uplink, and the zones can be widely separated geographically (though this is not required).

A zone consists of:

	One or more pods. Each pod contains one or more clusters of hosts and one or more primary storage servers.

	A zone may contain one or more primary storage servers, which are shared by all the pods in the zone.

	Secondary storage, which is shared by all the pods in the zone.

[image: _images/zone-overview.png]
Zones are visible to the end user. When a user starts a guest VM, the user must select a zone for their guest.
Users might also be required to copy their private templates to additional zones to enable creation of guest
VMs using their templates in those zones.

Zones can be public or private. Public zones are visible to all users. This means that any user may create a
guest in that zone. Private zones are reserved for a specific domain. Only users in that domain or its
subdomains may create guests in that zone.

Hosts in the same zone are directly accessible to each other without having to go through a firewall. Hosts
in different zones can access each other through statically configured VPN tunnels.

For each zone, the administrator must decide the following.

	How many pods to place in each zone.

	How many clusters to place in each pod.

	How many hosts to place in each cluster.

	(Optional) How many primary storage servers to place in each zone and total capacity for these storage servers.

	How many primary storage servers to place in each cluster and total capacity for these storage servers.

	How much secondary storage to deploy in a zone.

In order to support zone-wide functions for VMware, CloudStack is aware of VMware Datacenters and can map each
Datacenter to a CloudStack zone. To enable features like storage live migration and zone-wide primary storage
for VMware hosts, CloudStack has to make sure that a zone contains only a single VMware Datacenter.
Therefore, when you are creating a new CloudStack zone, you can select a VMware Datacenter for the zone.
If you are provisioning multiple VMware Datacenters, each one will be set up as a single zone in CloudStack.

Pods

A pod often represents a single rack or row of racks. Hosts in the same pod are in the same subnet.
A pod is the second-largest organizational unit within a CloudStack deployment. Pods are contained within zones.
Each zone can contain one or more pods. A pod consists of one or more clusters of hosts and one or more
primary storage servers. Pods are not visible to the end user.

[image: _images/pod-overview.png]

Clusters

A cluster consists of one or more hosts and one or more primary storage resources.

A cluster provides a way to group hosts. To be precise, a cluster is a XenServer server pool, a set of KVM servers,
or a VMware cluster preconfigured in vCenter. The hosts in a cluster should all have identical hardware,
run the same hypervisor, are on the same subnet, and access the same shared primary storage. Virtual machine
instances (VMs) can be live-migrated from one host to another within the same cluster, without interrupting service to the user.

The size of the cluster is limited by the underlying hypervisor, although the CloudStack recommends less in most cases; see Best Practices.

Even when local storage is used exclusively, clusters are still required organizationally, even if there is just one host per cluster.

When VMware is used, every VMware cluster is managed by a vCenter server. An Administrator must register the vCenter server with
CloudStack. There may be multiple vCenter servers per zone. Each vCenter server may manage multiple VMware clusters.

Hosts

A host is a single physical computer. Hosts provide the computing resources that run the guest machines.

The host is the smallest organizational unit within a CloudStack deployment and are not visible to an end user.

Primary Storage

Primary storage is associated with a cluster and/or a zone. It stores the disk volumes for all of the VMs
running on hosts in that cluster. You can add multiple primary storage servers to a cluster or a zone
(at least one is required at the cluster level). Primary storage is typically located close to the hosts
for increased performance. CloudStack manages the allocation of guest virtual disks to particular primary storage devices.

Primary storage can be either static or dynamic. Static primary storage is what CloudStack has
traditionally supported. In this model, the administrator must present CloudStack with a certain amount
of preallocated storage (ex. a volume from a SAN) and CloudStack can place many of its volumes on
this storage. In the newer, dynamic model, the administrator can present CloudStack with a storage system itself
(i.e. a SAN). CloudStack, working in concert with a plug-in developed for that storage system, can dynamically
create volumes on the storage system. A valuable use for this ability is Quality of Service (QoS).
If a volume created in CloudStack can be backed by a dedicated volume on a SAN (i.e. a one-to-one mapping
between a SAN volume and a CloudStack volume) and the SAN provides QoS functionality, then CloudStack can also orchestrate storage QoS.

CloudStack is designed to work with all standards-compliant iSCSI and NFS servers that are supported by the underlying hypervisor

You may also use local disks as secondary storage, though naturally they don’t support live migration.

Secondary Storage

Secondary storage stores the following:

	Templates — OS images that can be used to boot VMs and can include additional configuration information, such as installed applications

	ISO images — disc images containing data or bootable media for operating systems

	Disk volume snapshots — saved copies of VM data which can be used for data recovery or to create new templates

The items in secondary storage are available to all hosts in the scope of the secondary
storage, which may be defined as per zone or per region. CloudStack supports both NFS and Object Storage supporting either the
AWS S3 API or the Swift API as a backing store for Secondary Storage.

Physical Networks

One or more physical networks
can be associated with each zone. The physical network typically corresponds to a physical NIC on the host. Each physical network
can carry one or more types of network traffic. The choices of traffic type for each network vary depending on your network choices.

A physical network is the actual network hardware and wiring in a zone. A zone can have multiple physical networks.

	An administrator can:

	Add/Remove/Update physical networks in a zone

	Configure VLANs on the physical network

	Configure a name so the network can be recognized by hypervisors

	Configure the service providers (firewalls, load balancers, etc.) available on a physical network

	Configure the IP addresses available to a physical network

	Specify what type of traffic is carried on the physical network, as well as other properties like network speed

Basic Zone Network Types

When basic networking is used, there can be only one physical network in the zone. That physical network carries the following traffic types:

	Guest: When end users run VMs, they generate guest traffic. The guest VMs communicate with each other over a network that can be referred to as the guest network. Each pod in a basic zone is a broadcast domain, and therefore each pod has a different IP range for the guest network. The administrator must configure the IP range for each pod.

	Management: When CloudStack’s internal resources communicate with each other, they generate management traffic. This includes communication between hosts, system VMs (VMs used by CloudStack to perform various tasks in the cloud), and any other component that communicates directly with the CloudStack Management Server. You must configure the IP range for the system VMs to use.

	Public: Public traffic is generated when VMs in the cloud access the Internet. Publicly accessible IPs must be allocated for this purpose. End users can use the CloudStack UI to acquire these IPs to implement NAT between their guest network and the public network, as described in Acquiring a New IP Address.

	Storage: While labeled “storage” this is specifically about secondary storage, and doesn’t affect traffic for primary storage. This includes traffic such as VM templates and snapshots, which is sent between the secondary storage VM and secondary storage servers. CloudStack uses a separate Network Interface Controller (NIC) named storage NIC for storage network traffic. Use of a storage NIC that always operates on a high bandwidth network allows fast template and snapshot copying. You must configure the IP range to use for the storage network.

In a basic network, configuring the physical network is fairly straightforward. In most cases, you only need to configure one
guest network to carry traffic that is generated by guest VMs. If you use a NetScaler load balancer and enable its elastic
IP and elastic load balancing (EIP and ELB) features, you must also configure a network to carry public traffic.
CloudStack takes care of presenting the necessary network configuration steps to you in the UI when you add a new zone.

Basic Zone Guest IP Addresses

When basic networking is used, CloudStack will assign IP addresses in the CIDR of the pod to the guests in that pod.
The administrator must add a Direct IP range on the pod for this purpose. These IPs are in the same VLAN as the hosts.

Advanced Zone Network Types

When advanced networking is used, there can be multiple physical networks in the zone. Each physical network can carry
one or more traffic types, and you need to let CloudStack know which type of network traffic you want each network to carry.

The traffic types in an advanced zone are:

	Guest: When end users run VMs, they generate guest traffic. The guest VMs communicate with each other over a network that can be referred to as the guest network. This network can be isolated or shared. In an isolated guest network, the administrator needs to reserve VLAN ranges to provide isolation for each CloudStack account’s network (potentially a large number of VLANs). In a shared guest network, all guest VMs share a single network.

	Management: When CloudStack’s internal resources communicate with each other, they generate management traffic. This includes communication between hosts, system VMs (VMs used by CloudStack to perform various tasks in the cloud), and any other component that communicates directly with the CloudStack Management Server. You must configure the IP range for the system VMs to use.

	Public: Public traffic is generated when VMs in the cloud access the Internet. Publicly accessible IPs must be allocated for this purpose. End users can use the CloudStack UI to acquire these IPs to implement NAT between their guest network and the public network, as described in “Acquiring a New IP Address” in the Administration Guide.

	Storage: While labeled “storage” this is specifically about secondary storage, and doesn’t affect traffic for primary storage. This includes traffic such as VM templates and snapshots, which is sent between the secondary storage VM and secondary storage servers. CloudStack uses a separate Network Interface Controller (NIC) named storage NIC for storage network traffic. Use of a storage NIC that always operates on a high bandwidth network allows fast template and snapshot copying. You must configure the IP range to use for the storage network.

These traffic types can each be on a separate physical network, or they can be combined with certain restrictions.

Advanced Zone Guest IP Addresses

When advanced networking is used, the administrator can create additional networks for use by the guests. These networks can
span the zone and be available to all accounts, or they can be scoped to a single account, in which case only the named
account may create guests that attach to these networks. The networks are defined by a VLAN ID, IP range, and gateway.
The administrator may provision thousands of these networks if desired. Additionally, the administrator can reserve a part
of the IP address space for non-CloudStack VMs and servers.

Advanced Zone Public IP Addresses

In an advanced network, Public IP addresses are typically on one or more dedicated VLANs and are routed or NATed to guest VMs.

System Reserved IP Addresses

In each zone, you need to configure a range of reserved IP addresses for the management network. This network carries
communication between the CloudStack Management Server and various system VMs, such as Secondary Storage VMs, Console Proxy VMs, and DHCP.

The reserved IP addresses must be unique across the cloud. You cannot, for example, have a host in one zone which has the same private
IP address as a host in another zone.

The hosts in a pod are assigned private IP addresses. These are typically RFC1918 addresses. The Console Proxy and Secondary Storage
system VMs are also allocated private IP addresses in the CIDR of the pod that they are created in.

Make sure computing servers and Management Servers use IP addresses outside of the System Reserved IP range. In example, suppose
the System Reserved IP range starts at 192.168.154.2 and ends at 192.168.154.7. CloudStack can use .2 to .7 for System VMs.
This leaves the rest of the pod CIDR, from .8 to .254, for the Management Server and hypervisor hosts.

In all zones

Provide private IPs for the system in each pod and provision them in CloudStack.

For KVM and XenServer, the recommended number of private IPs per pod is one per host. If you expect a pod to grow, add
enough private IPs now to accommodate the growth.

In a zone that uses advanced networking

For zones with advanced networking, we recommend provisioning enough private IPs for your total number of customers,
plus enough for the required CloudStack System VMs. Typically, about 10 additional IPs are required for the System VMs.
For more information about System VMs, see the section on working with SystemVMs in the Administrator’s Guide.

When advanced networking is being used, the number of private IP addresses available in each pod varies depending on which
hypervisor is running on the nodes in that pod. Citrix XenServer and KVM use link-local addresses, which in theory provide
more than 65,000 private IP addresses within the address block. As the pod grows over time, this should be more than enough
for any reasonable number of hosts as well as IP addresses for guest virtual routers. VMWare ESXi, by contrast uses any
administrator-specified subnetting scheme, and the typical administrator provides only 255 IPs per pod. Since these are
shared by physical machines, the guest virtual router, and other entities, it is possible to run out of private IPs when
scaling up a pod whose nodes are running ESXi.

To ensure adequate headroom to scale private IP space in an ESXi pod that uses advanced networking, use one or both of the following techniques:

	Specify a larger CIDR block for the subnet. A subnet mask with a /20 suffix will provide more than 4,000 IP addresses.

	Create multiple pods, each with its own subnet. In example, if you create 10 pods and each pod has 255 IPs, this will provide 2,550 IP addresses.

CloudStack Terminology

About Regions

To increase reliability of the cloud, you can optionally group resources
into multiple geographic regions. A region is the largest available
organizational unit within a CloudStack deployment. A region is made up
of several availability zones, where each zone is roughly equivalent to
a datacenter. Each region is controlled by its own cluster of Management
Servers, running in one of the zones. The zones in a region are
typically located in close geographical proximity. Regions are a useful
technique for providing fault tolerance and disaster recovery.

By grouping zones into regions, the cloud can achieve higher
availability and scalability. User accounts can span regions, so that
users can deploy VMs in multiple, widely-dispersed regions. Even if one
of the regions becomes unavailable, the services are still available to
the end-user through VMs deployed in another region. And by grouping
communities of zones under their own nearby Management Servers, the
latency of communications within the cloud is reduced compared to
managing widely-dispersed zones from a single central Management Server.

Usage records can also be consolidated and tracked at the region level,
creating reports or invoices for each geographic region.

[image: region-overview.png: Nested structure of a region.]

Regions are visible to the end user. When a user starts a guest VM on a
particular CloudStack Management Server, the user is implicitly
selecting that region for their guest. Users might also be required to
copy their private templates to additional regions to enable creation of
guest VMs using their templates in those regions.

About Zones

A zone is the second largest organizational unit within a CloudStack
deployment. A zone typically corresponds to a single datacenter,
although it is permissible to have multiple zones in a datacenter. The
benefit of organizing infrastructure into zones is to provide physical
isolation and redundancy. For example, each zone can have its own power
supply and network uplink, and the zones can be widely separated
geographically (though this is not required).

A zone consists of:

	One or more pods. Each pod contains one or more clusters of hosts and
one or more primary storage servers.

	A zone may contain one or more primary storage servers, which are
shared by all the pods in the zone.

	Secondary storage, which is shared by all the pods in the zone.

[image: zone-overview.png: Nested structure of a simple zone.]

Zones are visible to the end user. When a user starts a guest VM, the
user must select a zone for their guest. Users might also be required to
copy their private templates to additional zones to enable creation of
guest VMs using their templates in those zones.

Zones can be public or private. Public zones are visible to all users.
This means that any user may create a guest in that zone. Private zones
are reserved for a specific domain. Only users in that domain or its
subdomains may create guests in that zone.

Hosts in the same zone are directly accessible to each other without
having to go through a firewall. Hosts in different zones can access
each other through statically configured VPN tunnels.

For each zone, the administrator must decide the following.

	How many pods to place in each zone.

	How many clusters to place in each pod.

	How many hosts to place in each cluster.

	(Optional) How many primary storage servers to place in each zone and
total capacity for these storage servers.

	How many primary storage servers to place in each cluster and total
capacity for these storage servers.

	How much secondary storage to deploy in a zone.

When you add a new zone using the CloudStack UI, you will be prompted to
configure the zone’s physical network and add the first pod, cluster,
host, primary storage, and secondary storage.

In order to support zone-wide functions for VMware, CloudStack is aware
of VMware Datacenters and can map each Datacenter to a CloudStack zone.
To enable features like storage live migration and zone-wide primary
storage for VMware hosts, CloudStack has to make sure that a zone
contains only a single VMware Datacenter. Therefore, when you are
creating a new CloudStack zone, you can select a VMware Datacenter for
the zone. If you are provisioning multiple VMware Datacenters, each one
will be set up as a single zone in CloudStack.

Note

If you are upgrading from a previous CloudStack version, and your existing deployment contains a zone with clusters from multiple VMware Datacenters, that zone will not be forcibly migrated to the new model. It will continue to function as before. However, any new zone-wide operations, such as zone-wide primary storage and live storage migration, will not be available in that zone.

About Pods

A pod often represents a single rack. Hosts in the same pod are in the
same subnet. A pod is the third-largest organizational unit within a
CloudStack deployment. Pods are contained within zones. Each zone can
contain one or more pods. A pod consists of one or more clusters of
hosts and one or more primary storage servers. Pods are not visible to
the end user.

[image: pod-overview.png: Nested structure of a simple pod]

About Clusters

A cluster provides a way to group hosts. To be precise, a cluster is a
XenServer server pool, a set of KVM servers, , or a VMware cluster
preconfigured in vCenter. The hosts in a cluster all have identical
hardware, run the same hypervisor, are on the same subnet, and access
the same shared primary storage. Virtual machine instances (VMs) can be
live-migrated from one host to another within the same cluster, without
interrupting service to the user.

A cluster is the fourth-largest organizational unit within a CloudStack
deployment. Clusters are contained within pods, and pods are contained
within zones. Size of the cluster is limited by the underlying
hypervisor, although the CloudStack recommends less in most cases; see
Best Practices.

A cluster consists of one or more hosts and one or more primary storage
servers.

[image: cluster-overview.png: Structure of a simple cluster]

CloudStack allows multiple clusters in a cloud deployment.

Even when local storage is used exclusively, clusters are still required
organizationally, even if there is just one host per cluster.

When VMware is used, every VMware cluster is managed by a vCenter
server. An Administrator must register the vCenter server with
CloudStack. There may be multiple vCenter servers per zone. Each vCenter
server may manage multiple VMware clusters.

About Hosts

A host is a single computer. Hosts provide the computing resources that
run guest virtual machines. Each host has hypervisor software installed
on it to manage the guest VMs. For example, a host can be a Citrix
XenServer server, a Linux KVM-enabled server, an ESXi server, or a
Windows Hyper-V server.

The host is the smallest organizational unit within a CloudStack
deployment. Hosts are contained within clusters, clusters are contained
within pods, pods are contained within zones, and zones can be contained
within regions.

Hosts in a CloudStack deployment:

	Provide the CPU, memory, storage, and networking resources needed to
host the virtual machines

	Interconnect using a high bandwidth TCP/IP network and connect to the
Internet

	May reside in multiple data centers across different geographic
locations

	May have different capacities (different CPU speeds, different
amounts of RAM, etc.), although the hosts within a cluster must all
be homogeneous

Additional hosts can be added at any time to provide more capacity for
guest VMs.

CloudStack automatically detects the amount of CPU and memory resources
provided by the hosts.

Hosts are not visible to the end user. An end user cannot determine
which host their guest has been assigned to.

For a host to function in CloudStack, you must do the following:

	Install hypervisor software on the host

	Assign an IP address to the host

	Ensure the host is connected to the CloudStack Management Server.

About Primary Storage

Primary storage is associated with a cluster or (in KVM and VMware) a
zone, and it stores the disk volumes for all the VMs running on hosts.

You can add multiple primary storage servers to a cluster or zone. At
least one is required. It is typically located close to the hosts for
increased performance. CloudStack manages the allocation of guest
virtual disks to particular primary storage devices.

It is useful to set up zone-wide primary storage when you want to avoid
extra data copy operations. With cluster-based primary storage, data in
the primary storage is directly available only to VMs within that
cluster. If a VM in a different cluster needs some of the data, it must
be copied from one cluster to another, using the zone’s secondary
storage as an intermediate step. This operation can be unnecessarily
time-consuming.

For Hyper-V, SMB/CIFS storage is supported. Note that Zone-wide Primary
Storage is not supported in Hyper-V.

CloudStack is designed to work with all standards-compliant iSCSI and
NFS servers that are supported by the underlying hypervisor, including,
for example:

	SolidFire for iSCSI

	Dell EqualLogic™ for iSCSI

	Network Appliances filers for NFS and iSCSI

	Scale Computing for NFS

If you intend to use only local disk for your installation, you can skip
adding separate primary storage.

About Secondary Storage

Secondary storage stores the following:

	Templates — OS images that can be used to boot VMs and can include
additional configuration information, such as installed applications

	ISO images — disc images containing data or bootable media for
operating systems

	Disk volume snapshots — saved copies of VM data which can be used for
data recovery or to create new templates

The items in secondary storage are available to all hosts in the scope
of the secondary storage, which may be defined as per zone or per
region.

To make items in secondary storage available to all hosts throughout the
cloud, you can add object storage in addition to the zone-based NFS
Secondary Staging Store. It is not necessary to copy templates and
snapshots from one zone to another, as would be required when using zone
NFS alone. Everything is available everywhere.

For Hyper-V hosts, SMB/CIFS storage is supported.

CloudStack provides plugins that enable both OpenStack Object Storage
(Swift, swift.openstack.org [http://swift.openstack.org]) and Amazon
Simple Storage Service (S3) object storage. When using one of these
storage plugins, you configure Swift or S3 storage for the entire
CloudStack, then set up the NFS Secondary Staging Store for each zone.
The NFS storage in each zone acts as a staging area through which all
templates and other secondary storage data pass before being forwarded
to Swift or S3. The backing object storage acts as a cloud-wide
resource, making templates and other data available to any zone in the
cloud.

Avertissement

Heterogeneous Secondary Storage is not supported in Regions. For example, you cannot set up multiple zones, one using NFS secondary and the other using S3 or Swift secondary.

About Physical Networks

Part of adding a zone is setting up the physical network. One or (in an
advanced zone) more physical networks can be associated with each zone.
The network corresponds to a NIC on the hypervisor host. Each physical
network can carry one or more types of network traffic. The choices of
traffic type for each network vary depending on whether you are creating
a zone with basic networking or advanced networking.

A physical network is the actual network hardware and wiring in a zone.
A zone can have multiple physical networks. An administrator can:

	Add/Remove/Update physical networks in a zone

	Configure VLANs on the physical network

	Configure a name so the network can be recognized by hypervisors

	Configure the service providers (firewalls, load balancers, etc.)
available on a physical network

	Configure the IP addresses trunked to a physical network

	Specify what type of traffic is carried on the physical network, as
well as other properties like network speed

Basic Zone Network Traffic Types

When basic networking is used, there can be only one physical network in
the zone. That physical network carries the following traffic types:

	Guest. When end users run VMs, they generate guest traffic. The guest
VMs communicate with each other over a network that can be referred
to as the guest network. Each pod in a basic zone is a broadcast
domain, and therefore each pod has a different IP range for the guest
network. The administrator must configure the IP range for each pod.

	Management. When CloudStack’s internal resources communicate with
each other, they generate management traffic. This includes
communication between hosts, system VMs (VMs used by CloudStack to
perform various tasks in the cloud), and any other component that
communicates directly with the CloudStack Management Server. You must
configure the IP range for the system VMs to use.

Note

We strongly recommend the use of separate NICs for management traffic
and guest traffic.

	Public. Public traffic is generated when VMs in the cloud access the
Internet. Publicly accessible IPs must be allocated for this purpose.
End users can use the CloudStack UI to acquire these IPs to implement
NAT between their guest network and the public network, as described
in Acquiring a New IP Address.

	Storage. While labeled “storage” this is specifically about secondary
storage, and doesn’t affect traffic for primary storage. This
includes traffic such as VM templates and snapshots, which is sent
between the secondary storage VM and secondary storage servers.
CloudStack uses a separate Network Interface Controller (NIC) named
storage NIC for storage network traffic. Use of a storage NIC that
always operates on a high bandwidth network allows fast template and
snapshot copying. You must configure the IP range to use for the
storage network.

In a basic network, configuring the physical network is fairly
straightforward. In most cases, you only need to configure one guest
network to carry traffic that is generated by guest VMs. If you use a
NetScaler load balancer and enable its elastic IP and elastic load
balancing (EIP and ELB) features, you must also configure a network to
carry public traffic. CloudStack takes care of presenting the necessary
network configuration steps to you in the UI when you add a new zone.

Basic Zone Guest IP Addresses

When basic networking is used, CloudStack will assign IP addresses in
the CIDR of the pod to the guests in that pod. The administrator must
add a Direct IP range on the pod for this purpose. These IPs are in the
same VLAN as the hosts.

Advanced Zone Network Traffic Types

When advanced networking is used, there can be multiple physical
networks in the zone. Each physical network can carry one or more
traffic types, and you need to let CloudStack know which type of network
traffic you want each network to carry. The traffic types in an advanced
zone are:

	Guest. When end users run VMs, they generate guest traffic. The guest
VMs communicate with each other over a network that can be referred
to as the guest network. This network can be isolated or shared. In
an isolated guest network, the administrator needs to reserve VLAN
ranges to provide isolation for each CloudStack account’s network
(potentially a large number of VLANs). In a shared guest network, all
guest VMs share a single network.

	Management. When CloudStack’s internal resources communicate with
each other, they generate management traffic. This includes
communication between hosts, system VMs (VMs used by CloudStack to
perform various tasks in the cloud), and any other component that
communicates directly with the CloudStack Management Server. You must
configure the IP range for the system VMs to use.

	Public. Public traffic is generated when VMs in the cloud access the
Internet. Publicly accessible IPs must be allocated for this purpose.
End users can use the CloudStack UI to acquire these IPs to implement
NAT between their guest network and the public network, as described
in “Acquiring a New IP Address” in the Administration Guide.

	Storage. While labeled “storage” this is specifically about secondary
storage, and doesn’t affect traffic for primary storage. This
includes traffic such as VM templates and snapshots, which is sent
between the secondary storage VM and secondary storage servers.
CloudStack uses a separate Network Interface Controller (NIC) named
storage NIC for storage network traffic. Use of a storage NIC that
always operates on a high bandwidth network allows fast template and
snapshot copying. You must configure the IP range to use for the
storage network.

These traffic types can each be on a separate physical network, or they
can be combined with certain restrictions. When you use the Add Zone
wizard in the UI to create a new zone, you are guided into making only
valid choices.

Advanced Zone Guest IP Addresses

When advanced networking is used, the administrator can create
additional networks for use by the guests. These networks can span the
zone and be available to all accounts, or they can be scoped to a single
account, in which case only the named account may create guests that
attach to these networks. The networks are defined by a VLAN ID, IP
range, and gateway. The administrator may provision thousands of these
networks if desired. Additionally, the administrator can reserve a part
of the IP address space for non-CloudStack VMs and servers.

Advanced Zone Public IP Addresses

When advanced networking is used, the administrator can create
additional networks for use by the guests. These networks can span the
zone and be available to all accounts, or they can be scoped to a single
account, in which case only the named account may create guests that
attach to these networks. The networks are defined by a VLAN ID, IP
range, and gateway. The administrator may provision thousands of these
networks if desired.

System Reserved IP Addresses

In each zone, you need to configure a range of reserved IP addresses for
the management network. This network carries communication between the
CloudStack Management Server and various system VMs, such as Secondary
Storage VMs, Console Proxy VMs, and DHCP.

The reserved IP addresses must be unique across the cloud. You cannot,
for example, have a host in one zone which has the same private IP
address as a host in another zone.

The hosts in a pod are assigned private IP addresses. These are
typically RFC1918 addresses. The Console Proxy and Secondary Storage
system VMs are also allocated private IP addresses in the CIDR of the
pod that they are created in.

Make sure computing servers and Management Servers use IP addresses
outside of the System Reserved IP range. For example, suppose the System
Reserved IP range starts at 192.168.154.2 and ends at 192.168.154.7.
CloudStack can use .2 to .7 for System VMs. This leaves the rest of the
pod CIDR, from .8 to .254, for the Management Server and hypervisor
hosts.

In all zones:

Provide private IPs for the system in each pod and provision them in
CloudStack.

For KVM and XenServer, the recommended number of private IPs per pod is
one per host. If you expect a pod to grow, add enough private IPs now to
accommodate the growth.

In a zone that uses advanced networking:

For zones with advanced networking, we recommend provisioning enough
private IPs for your total number of customers, plus enough for the
required CloudStack System VMs. Typically, about 10 additional IPs are
required for the System VMs. For more information about System VMs, see
the section on working with SystemVMs in the Administrator’s Guide.

When advanced networking is being used, the number of private IP
addresses available in each pod varies depending on which hypervisor is
running on the nodes in that pod. Citrix XenServer and KVM use
link-local addresses, which in theory provide more than 65,000 private
IP addresses within the address block. As the pod grows over time, this
should be more than enough for any reasonable number of hosts as well as
IP addresses for guest virtual routers. VMWare ESXi, by contrast uses
any administrator-specified subnetting scheme, and the typical
administrator provides only 255 IPs per pod. Since these are shared by
physical machines, the guest virtual router, and other entities, it is
possible to run out of private IPs when scaling up a pod whose nodes are
running ESXi.

To ensure adequate headroom to scale private IP space in an ESXi pod
that uses advanced networking, use one or both of the following
techniques:

	Specify a larger CIDR block for the subnet. A subnet mask with a /20
suffix will provide more than 4,000 IP addresses.

	Create multiple pods, each with its own subnet. For example, if you
create 10 pods and each pod has 255 IPs, this will provide 2,550 IP
addresses.

The Nicira NVP Plugin

Introduction to the Nicira NVP Plugin

The Nicira NVP plugin adds Nicira NVP as one of the available SDN
implementations in CloudStack. With the plugin an exisiting Nicira NVP
setup can be used by CloudStack to implement isolated guest networks and
to provide additional services like routing and NAT.

Features of the Nicira NVP Plugin

The following table lists the CloudStack network services provided by
the Nicira NVP Plugin.

	Network Service
	CloudStack version
	NVP version

	Virtual Networking
	>= 4.0
	>= 2.2.1

	Source NAT
	>= 4.1
	>= 3.0.1

	Static NAT
	>= 4.1
	>= 3.0.1

	Port Forwarding
	>= 4.1
	>= 3.0.1

Table: Supported Services

Note

The Virtual Networking service was originally called ‘Connectivity’
in CloudStack 4.0

The following hypervisors are supported by the Nicira NVP Plugin.

	Hypervisor
	CloudStack version

	XenServer
	>= 4.0

	KVM
	>= 4.1

Table: Supported Hypervisors

Note

Please refer to the Nicira NVP configuration guide on how to prepare
the hypervisors for Nicira NVP integration.

Configuring the Nicira NVP Plugin

Prerequisites

Before enabling the Nicira NVP plugin the NVP Controller needs to be
configured. Please review the NVP User Guide on how to do that.

Make sure you have the following information ready:

	The IP address of the NVP Controller

	The username to access the API

	The password to access the API

	The UUID of the Transport Zone that contains the hypervisors in this
Zone

	The UUID of the Gateway Service used to provide router and NAT
services.

Note

The gateway service uuid is optional and is used for Layer 3
services only (SourceNat, StaticNat and PortForwarding)

Zone Configuration

CloudStack needs to have at least one physical network with the isolation
method set to “STT”. This network should be enabled for the Guest
traffic type.

Note

The Guest traffic type should be configured with the traffic label
that matches the name of the Integration Bridge on the hypervisor.
See the Nicira NVP User Guide for more details on how to set this up
in XenServer or KVM.

[image: a screenshot of a physical network with the STT isolation type]

Enabling the service provider

The Nicira NVP provider is disabled by default. Navigate to the “Network
Service Providers” configuration of the physical network with the STT
isolation type. Navigate to the Nicira NVP provider and press the
“Enable Provider” button.

Note

CloudStack 4.0 does not have the UI interface to configure the
Nicira NVP plugin. Configuration needs to be done using the API
directly.

[image: a screenshot of an enabled Nicira NVP provider]

Device Management

In CloudStack a Nicira NVP setup is considered a “device” that can be added
and removed from a physical network. To complete the configuration of
the Nicira NVP plugin a device needs to be added to the physical
network. Press the “Add NVP Controller” button on the provider panel and
enter the configuration details.

[image: a screenshot of the device configuration popup.]

Network Offerings

Using the Nicira NVP plugin requires a network offering with Virtual
Networking enabled and configured to use the NiciraNvp element. Typical
use cases combine services from the Virtual Router appliance and the
Nicira NVP plugin.

	Service
	Provider

	VPN
	VirtualRouter

	DHCP
	VirtualRouter

	DNS
	VirtualRouter

	Firewall
	VirtualRouter

	Load Balancer
	VirtualRouter

	User Data
	VirtualRouter

	Source NAT
	VirtualRouter

	Static NAT
	VirtualRouter

	Post Forwarding
	VirtualRouter

	Virtual Networking
	NiciraNVP

Table: Isolated network offering with regular services from the Virtual
Router.

[image: a screenshot of a network offering.]

Note

The tag in the network offering should be set to the name of the
physical network with the NVP provider.

Isolated network with network services. The virtual router is still
required to provide network services like dns and dhcp.

	Service
	Provider

	DHCP
	VirtualRouter

	DNS
	VirtualRouter

	User Data
	VirtualRouter

	Source NAT
	NiciraNVP

	Static NAT
	NiciraNVP

	Post Forwarding
	NiciraNVP

	Virtual Networking
	NiciraNVP

Table: Isolated network offering with network services

Using the Nicira NVP plugin with VPC

Supported VPC features

The Nicira NVP plugin supports CloudStack VPC to a certain extent. Starting
with CloudStack version 4.1 VPCs can be deployed using NVP isolated
networks.

It is not possible to use a Nicira NVP Logical Router for as a VPC
Router

It is not possible to connect a private gateway using a Nicira NVP
Logical Switch

VPC Offering with Nicira NVP

To allow a VPC to use the Nicira NVP plugin to provision networks, a new
VPC offering needs to be created which allows the Virtual Networking
service to be implemented by NiciraNVP.

This is not currently possible with the UI. The API does provide the
proper calls to create a VPC offering with Virtual Networking enabled.
However due to a limitation in the 4.1 API it is not possible to select
the provider for this network service. To configure the VPC offering
with the NiciraNVP provider edit the database table
‘vpc_offering_service_map’ and change the provider to NiciraNvp for
the service ‘Connectivity’

It is also possible to update the default VPC offering by adding a row
to the ‘vpc_offering_service_map’ with service ‘Connectivity’ and
provider ‘NiciraNvp’

[image: a screenshot of the mysql table.]

Note

When creating a new VPC offering please note that the UI does not
allow you to select a VPC offering yet. The VPC needs to be created
using the API with the offering UUID.

VPC Network Offerings

The VPC needs specific network offerings with the VPC flag enabled.
Otherwise these network offerings are identical to regular network
offerings. To allow VPC networks with a Nicira NVP isolated network the
offerings need to support the Virtual Networking service with the
NiciraNVP provider.

In a typical configuration two network offerings need to be created. One
with the loadbalancing service enabled and one without loadbalancing.

	Service
	Provider

	VPN
	VpcVirtualRouter

	DHCP
	VpcVirtualRouter

	DNS
	VpcVirtualRouter

	Load Balancer
	VpcVirtualRouter

	User Data
	VpcVirtualRouter

	Source NAT
	VpcVirtualRouter

	Static NAT
	VpcVirtualRouter

	Post Forwarding
	VpcVirtualRouter

	NetworkACL
	VpcVirtualRouter

	Virtual Networking
	NiciraNVP

Table: VPC Network Offering with Loadbalancing

Troubleshooting the Nicira NVP Plugin

UUID References

The plugin maintains several references in the CloudStack database to items
created on the NVP Controller.

Every guest network that is created will have its broadcast type set to
Lswitch and if the network is in state “Implemented”, the broadcast URI
will have the UUID of the Logical Switch that was created for this
network on the NVP Controller.

The Nics that are connected to one of the Logical Switches will have
their Logical Switch Port UUID listed in the nicira_nvp_nic_map table

Note

All devices created on the NVP Controller will have a tag set to
domain-account of the owner of the network, this string can be used
to search for items in the NVP Controller.

Database tables

The following tables are added to the cloud database for the Nicira NVP
Plugin

	id
	auto incrementing id

	logicalswitch
	uuid of the logical switch this port is connected to

	logicalswitchport
	uuid of the logical switch port for this nic

	nic
	the CloudStack uuid for this nic, reference to the nics table

Table: nicira_nvp_nic_map

	id
	auto incrementing id

	uuid
	UUID identifying this device

	physical_network_id
	the physical network this device is configured on

	provider_name
	NiciraNVP

	device_name
	display name for this device

	host_id
	reference to the host table with the device configuration

Table: external_nicira_nvp_devices

	id
	auto incrementing id

	logicalrouter_uuid
	uuid of the logical router

	network_id
	id of the network this router is linked to

Table: nicira_nvp_router_map

Note

nicira_nvp_router_map is only available in CloudStack 4.1 and above

Revision History

0-0 Wed Oct 03 2012 Hugo Trippaers hugo@apache.org Documentation created
for 4.0.0-incubating version of the NVP Plugin 1-0 Wed May 22 2013 Hugo
Trippaers hugo@apache.org Documentation updated for CloudStack 4.1.0

The MidoNet Plugin

Introduction to the MidoNet Plugin

The MidoNet plugin allows CloudStack to use the MidoNet virtualized
networking solution as a provider for CloudStack networks and services. For
more information on MidoNet and how it works, see
http://www.midokura.com/midonet/.

Features of the MidoNet Plugin

Note

In CloudStack 4.2.0 only the KVM hypervisor is supported for use in
combination with MidoNet.

In CloudStack release 4.2.0 this plugin supports several services in the
Advanced Isolated network mode.

When tenants create new isolated layer 3 networks, instead of spinning
up extra Virtual Router VMs, the relevant L3 elements (routers etc) are
created in the MidoNet virtual topology by making the appropriate calls
to the MidoNet API. Instead of using VLANs, isolation is provided by
MidoNet.

Aside from the above service (Connectivity), several extra features are
supported in the 4.2.0 release:

	DHCP

	Firewall (ingress)

	Source NAT

	Static NAT

	Port Forwarding

The plugin has been tested with MidoNet version 12.12. (Caddo).

Using the MidoNet Plugin

Prerequisites

In order to use the MidoNet plugin, the compute hosts must be running
the MidoNet Agent, and the MidoNet API server must be available. Please
consult the MidoNet User Guide for more information. The following
section describes the CloudStack side setup.

	CloudStack needs to have at least one physical network with the
isolation method set to “MIDO”. This network should be enabled for
the Guest and Public traffic types.

	Next, we need to set the following CloudStack settings under “Global
Settings” in the UI:

	Setting Name
	Description
	Example

	midonet.apiserver.address
	Specify the address at which the Midonet API server can be contacted
	http://192.168.1.144:8081/midolmanj-mgmt

	midonet.providerrouter.id
	Specifies the UUID of the Midonet provider router
	d7c5e6a3-e2f4-426b-b728-b7ce6a0448e5

Table: CloudStack settings

	We also want MidoNet to take care of public traffic, so in
componentContext.xml we need to replace this line:

<bean id="PublicNetworkGuru" class="com.cloud.network.guru.PublicNetworkGuru">

With this:

<bean id="PublicNetworkGuru" class="com.cloud.network.guru.MidoNetPublicNetworkGuru">

Note

On the compute host, MidoNet takes advantage of per-traffic type VIF
driver support in CloudStack KVM.

In agent.properties, we set the following to make MidoNet take care
of Guest and Public traffic:

libvirt.vif.driver.Guest=com.cloud.network.resource.MidoNetVifDriver
libvirt.vif.driver.Public=com.cloud.network.resource.MidoNetVifDriver

This is explained further in MidoNet User Guide.

Enabling the MidoNet service provider via the UI

To allow CloudStack to use the MidoNet Plugin the network service provider
needs to be enabled on the physical network.

The steps to enable via the UI are as follows:

	In the left navbar, click Infrastructure

	In Zones, click View All

	Click the name of the Zone on which you are setting up MidoNet

	Click the Physical Network tab

	Click the Name of the Network on which you are setting up MidoNet

	Click Configure on the Network Service Providers box

	Click on the name MidoNet

	Click the Enable Provider button in the Network tab

Enabling the MidoNet service provider via the API

To enable via the API, use the following API calls:

addNetworkServiceProvider

	name = “MidoNet”

	physicalnetworkid = <the uuid of the physical network>

updateNetworkServiceProvider

	id = <the provider uuid returned by the previous call>

	state = “Enabled”

Revision History

0-0 Wed Mar 13 2013 Dave Cahill dcahill@midokura.com Documentation
created for 4.2.0 version of the MidoNet Plugin

The VXLAN Plugin

System Requirements for VXLAN

In PRODUCT 4.X.0, this plugin only supports the KVM hypervisor with the
standard linux bridge.

The following table lists the requirements for the hypervisor.

	Item
	Requirement
	Note

	Hypervisor
	KVM
	OvsVifDriver is not supported by this plugin in PRODUCT 4.X, use BridgeVifDriver (default).

	Linux kernel
	version >= 3.7, VXLAN kernel module enabled
	It is recommended to use kernel >=3.9, since Linux kernel categorizes the VXLAN driver as experimental <3.9.

	iproute2
	matches kernel version
	

Table: Hypervisor Requirement for VXLAN

Linux Distributions that meet the requirements

The following table lists distributions which meet requirements.

	Distribution
	Release Version
	Kernel Version (Date confirmed)
	Note

	Ubuntu
	13.04
	3.8.0 (2013/07/23)
	

	Fedora
	>= 17
	3.9.10 (2013/07/23)
	Latest kernel packages are available in “update” repository.

	CentOS
	>= 6.5
	2.6.32-431.3.1.el6.x86_64 (2014/01/21)
	

Table: List of Linux distributions which meet the hypervisor
requirements

Check the capability of your system

To check the capability of your system, execute the following commands.

$ sudo modprobe vxlan && echo $?
Confirm the output is "0".
If it's non-0 value or error message, your kernel doesn't have VXLAN kernel module.

$ ip link add type vxlan help
Confirm the output is usage of the command and that it's for VXLAN.
If it's not, your iproute2 utility doesn't support VXLAN.

Advanced: Build kernel and iproute2

Even if your system doesn’t support VXLAN, you can compile the kernel
and iproute2 by yourself. The following procedure is an example for
CentOS 6.4.

Build kernel

$ sudo yum groupinstall "Development Tools"
$ sudo yum install ncurses-devel hmaccalc zlib-devel binutils-devel elfutils-libelf-devel bc

$ KERNEL_VERSION=3.10.4
Declare the kernel version you want to build.

$ wget https://www.kernel.org/pub/linux/kernel/v3.x/linux-${KERNEL_VERSION}.tar.xz
$ tar xvf linux-${KERNEL_VERSION}.tar.xz
$ cd linux-${KERNEL_VERSION}
$ cp /boot/config-`uname -r` .config
$ make oldconfig
You may keep hitting enter and choose the default.

$ make menuconfig
Dig into "Device Drivers" -> "Network device support",
then select "Virtual eXtensible Local Area Network (VXLAN)" and hit space.
Make sure it indicates "<M>" (build as module), then Save and Exit.

You may also want to check "IPv4 NAT" and its child nodes in "IP: Netfilter Configuration"
and "IPv6 NAT" and its child nodes in "IPv6: Netfilter Configuration".
In 3.10.4, you can find the options in
"Networking support" -> "Networking options"
-> "Network packet filtering framework (Netfilter)".

$ make # -j N
You may use -j N option to make the build process parallel and faster,
generally N = 1 + (cores your machine have).

$ sudo make modules_install
$ sudo make install
You would get an error like "ERROR: modinfo: could not find module XXXX" here.
This happens mainly due to config structure changes between kernel versions.
You can ignore this error, until you find you need the kernel module.
If you feel uneasy, you can go back to make menuconfig,
find module XXXX by using '/' key, enable the module, build and install the kernel again.

$ sudo vi /etc/grub.conf
Make sure the new kernel isn't set as the default and the timeout is long enough,
so you can select the new kernel during boot process.
It's not a good idea to set the new kernel as the default until you confirm the kernel works fine.

$ sudo reboot
Select the new kernel during the boot process.

Build iproute2

$ sudo yum install db4-devel

$ git clone git://git.kernel.org/pub/scm/linux/kernel/git/shemminger/iproute2.git
$ cd iproute2
$ git tag
Find the version that matches the kernel.
If you built kernel 3.10.4 as above, it would be v3.10.0.

$ git checkout v3.10.0
$./configure
$ make # -j N
$ sudo make install

Note

Please use rebuild kernel and tools at your own risk.

Configure PRODUCT to use VXLAN Plugin

Configure hypervisor

Configure hypervisor: KVM

In addition to “KVM Hypervisor Host Installation” in “PRODUCT
Installation Guide”, you have to configure the following item on the
host.

Create bridge interface with IPv4 address

This plugin requires an IPv4 address on the KVM host to terminate and
originate VXLAN traffic. The address should be assinged to a physical
interface or a bridge interface bound to a physical interface. Both a
private address or a public address are fine for the purpose. It is not
required to be in the same subnet for all hypervisors in a zone, but
they should be able to reach each other via IP multicast with UDP/8472
port. A name of a physical interface or a name of a bridge interface
bound to a physical interface can be used as a traffic label. Physical
interface name fits for almost all cases, but if physical interface name
differs per host, you may use a bridge to set a same name. If you would
like to use a bridge name as a traffic label, you may create a bridge in
this way.

Let cloudbr1 be the bridge interface for the instances’ private
network.

Configure in RHEL or CentOS

When you configured the cloudbr1 interface as below,

$ sudo vi /etc/sysconfig/network-scripts/ifcfg-cloudbr1

DEVICE=cloudbr1
TYPE=Bridge
ONBOOT=yes
BOOTPROTO=none
IPV6INIT=no
IPV6_AUTOCONF=no
DELAY=5
STP=yes

you would change the configuration similar to below.

DEVICE=cloudbr1
TYPE=Bridge
ONBOOT=yes
BOOTPROTO=static
IPADDR=192.0.2.X
NETMASK=255.255.255.0
IPV6INIT=no
IPV6_AUTOCONF=no
DELAY=5
STP=yes

Configure in Ubuntu

When you configured cloudbr1 as below,

$ sudo vi /etc/network/interfaces

auto lo
iface lo inet loopback

The primary network interface
auto eth0.100
iface eth0.100 inet static
 address 192.168.42.11
 netmask 255.255.255.240
 gateway 192.168.42.1
 dns-nameservers 8.8.8.8 8.8.4.4
 dns-domain lab.example.org

Public network
auto cloudbr0
iface cloudbr0 inet manual
 bridge_ports eth0.200
 bridge_fd 5
 bridge_stp off
 bridge_maxwait 1

Private network
auto cloudbr1
iface cloudbr1 inet manual
 bridge_ports eth0.300
 bridge_fd 5
 bridge_stp off
 bridge_maxwait 1

you would change the configuration similar to below.

auto lo
iface lo inet loopback

The primary network interface
auto eth0.100
iface eth0.100 inet static
 address 192.168.42.11
 netmask 255.255.255.240
 gateway 192.168.42.1
 dns-nameservers 8.8.8.8 8.8.4.4
 dns-domain lab.example.org

Public network
auto cloudbr0
iface cloudbr0 inet manual
 bridge_ports eth0.200
 bridge_fd 5
 bridge_stp off
 bridge_maxwait 1

Private network
auto cloudbr1
iface cloudbr1 inet static
 addres 192.0.2.X
 netmask 255.255.255.0
 bridge_ports eth0.300
 bridge_fd 5
 bridge_stp off
 bridge_maxwait 1

Configure iptables to pass XVLAN packets

Since VXLAN uses UDP packet to forward encapsulated the L2 frames,
UDP/8472 port must be opened.

Configure in RHEL or CentOS

RHEL and CentOS use iptables for firewalling the system, you can open
extra ports by executing the following iptable commands:

$ sudo iptables -I INPUT -p udp -m udp --dport 8472 -j ACCEPT

These iptable settings are not persistent accross reboots, we have to
save them first.

$ sudo iptables-save > /etc/sysconfig/iptables

With this configuration you should be able to restart the network,
although a reboot is recommended to see if everything works properly.

$ sudo service network restart
 $ sudo reboot

Avertissement

Make sure you have an alternative way like IPMI or ILO to reach the machine in case you made a configuration error and the network stops functioning!

Configure in Ubuntu

The default firewall under Ubuntu is UFW (Uncomplicated FireWall), which
is a Python wrapper around iptables.

To open the required ports, execute the following commands:

$ sudo ufw allow proto udp from any to any port 8472

Note

By default UFW is not enabled on Ubuntu. Executing these commands with the firewall disabled does not enable the firewall.

With this configuration you should be able to restart the network,
although a reboot is recommended to see if everything works properly.

$ sudo service networking restart
$ sudo reboot

Avertissement

Make sure you have an alternative way like IPMI or ILO to reach the machine in case you made a configuration error and the network stops functioning!

Setup zone using VXLAN

In almost all parts of zone setup, you can just follow the advanced zone
setup istruction in “PRODUCT Installation Guide” to use this plugin. It
is not required to add a network element nor to reconfigure the network
offering. The only thing you have to do is configure the physical
network to use VXLAN as the isolation method for Guest Network.

Configure the physical network

[image: ../_images/vxlan-physicalnetwork.png]

CloudStack needs to have one physical network for Guest Traffic with the
isolation method set to “VXLAN”.

[image: ../_images/vxlan-trafficlabel.png]

Guest Network traffic label should be the name of the physical interface
or the name of the bridge interface and the bridge interface and they
should have an IPv4 address. See ? for details.

Configure the guest traffic

[image: ../_images/vxlan-vniconfig.png]

Specify a range of VNIs you would like to use for carrying guest network
traffic.

Avertissement

VNI must be unique per zone and no duplicate VNIs can exist in the zone. Exercise care when designing your VNI allocation policy.

The OVS Plugin

Introduction to the OVS Plugin

The OVS plugin is the native SDN
implementations in CloudStack, using GRE isolation method. The plugin can be used by CloudStack to implement isolated guest networks and
to provide additional services like NAT, port forwarding and load balancing.

Features of the OVS Plugin

The following table lists the CloudStack network services provided by
the OVS Plugin.

	Network Service
	CloudStack version

	Virtual Networking
	>= 4.0

	Static NAT
	>= 4.3

	Port Forwarding
	>= 4.3

	Load Balancing
	>= 4.3

Table: Supported Services

Note

The Virtual Networking service was originally called ‘Connectivity’
in CloudStack 4.0

The following hypervisors are supported by the OVS Plugin.

	Hypervisor
	CloudStack version

	XenServer
	>= 4.0

	KVM
	>= 4.3

Table: Supported Hypervisors

Configuring the OVS Plugin

Prerequisites

Before enabling the OVS plugin the hypervisor needs to be install OpenvSwitch. Default, XenServer has already installed OpenvSwitch. However, you must install OpenvSwitch manually on KVM. CentOS 6.4 and OpenvSwitch 1.10 are recommended.

KVM hypervisor:

	CentOS 6.4 is recommended.

	To make sure that the native bridge module will not interfere with openvSwitch the bridge module should be added to the blacklist. See the modprobe documentation for your distribution on where to find the blacklist. Make sure the module is not loaded either by rebooting or executing rmmod bridge before executing next steps.

Zone Configuration

CloudStack needs to have at least one physical network with the isolation
method set to “GRE”. This network should be enabled for the Guest
traffic type.

Note

With KVM, the traffic type should be configured with the traffic label
that matches the name of the Integration Bridge on the hypervisor. For example, you should set the traffic label as following:
- Management & Storage traffic: cloudbr0
- Guest & Public traffic: cloudbr1
See KVM networking configuration guide for more detail.

[image: a screenshot of a physical network with the GRE isolation type]

Agent Configuration

Note

Only for KVM hypervisor

	Configure network interfaces:

/etc/sysconfig/network-scripts/ifcfg-eth0
DEVICE=eth0
BOOTPROTO=none
IPV6INIT=no
NM_CONTROLLED=no
ONBOOT=yes
TYPE=OVSPort
DEVICETYPE=ovs
OVS_BRIDGE=cloudbr0

/etc/sysconfig/network-scripts/ifcfg-eth1
DEVICE=eth1
BOOTPROTO=none
IPV6INIT=no
NM_CONTROLLED=no
ONBOOT=yes
TYPE=OVSPort
DEVICETYPE=ovs
OVS_BRIDGE=cloudbr1

/etc/sysconfig/network-scripts/ifcfg-cloudbr0
DEVICE=cloudbr0
ONBOOT=yes
DEVICETYPE=ovs
TYPE=OVSBridge
BOOTPROTO=static
IPADDR=172.16.10.10
GATEWAY=172.16.10.1
NETMASK=255.255.255.0
HOTPLUG=no

/etc/sysconfig/network-scripts/ifcfg-cloudbr1
DEVICE=cloudbr1
ONBOOT=yes
DEVICETYPE=ovs
TYPE=OVSBridge
BOOTPROTO=none
HOTPLUG=no

/etc/sysconfig/network
NETWORKING=yes
HOSTNAME=testkvm1
GATEWAY=172.10.10.1

	Edit /etc/cloudstack/agent/agent.properties

network.bridge.type=openvswitch
libvirt.vif.driver=com.cloud.hypervisor.kvm.resource.OvsVifDriver

Enabling the service provider

The OVS provider is disabled by default. Navigate to the “Network
Service Providers” configuration of the physical network with the GRE
isolation type. Navigate to the OVS provider and press the
“Enable Provider” button.

[image: a screenshot of an enabled OVS provider]

Network Offerings

Using the OVS plugin requires a network offering with Virtual
Networking enabled and configured to use the OVS element. Typical
use cases combine services from the Virtual Router appliance and the
OVS plugin.

	Service
	Provider

	VPN
	VirtualRouter

	DHCP
	VirtualRouter

	DNS
	VirtualRouter

	Firewall
	VirtualRouter

	Load Balancer
	OVS

	User Data
	VirtualRouter

	Source NAT
	VirtualRouter

	Static NAT
	OVS

	Post Forwarding
	OVS

	Virtual Networking
	OVS

Table: Isolated network offering with regular services from the Virtual
Router.

[image: a screenshot of a network offering.]

Note

The tag in the network offering should be set to the name of the
physical network with the OVS provider.

Isolated network with network services. The virtual router is still
required to provide network services like dns and dhcp.

	Service
	Provider

	DHCP
	VirtualRouter

	DNS
	VirtualRouter

	User Data
	VirtualRouter

	Source NAT
	VirtualRouter

	Static NAT
	OVS

	Post Forwarding
	OVS

	Load Balancing
	OVS

	Virtual Networking
	OVS

Table: Isolated network offering with network services

Using the OVS plugin with VPC

OVS plugin does not work with VPC at that time

Revision History

0-0 Mon Dec 2 2013 Nguyen Anh Tu tuna@apache.org Documentation
created for 4.3.0 version of the OVS Plugin

IPv6 Support in CloudStack

CloudStack supports Internet Protocol version 6 (IPv6), the recent
version of the Internet Protocol (IP) that defines routing the network
traffic. IPv6 uses a 128-bit address that exponentially expands the
current address space that is available to the users. IPv6 addresses
consist of eight groups of four hexadecimal digits separated by colons,
for example, 5001:0dt8:83a3:1012:1000:8s2e:0870:7454. CloudStack
supports IPv6 for public IPs in shared networks. With IPv6 support, VMs
in shared networks can obtain both IPv4 and IPv6 addresses from the DHCP
server. You can deploy VMs either in a IPv6 or IPv4 network, or in a
dual network environment. If IPv6 network is used, the VM generates a
link-local IPv6 address by itself, and receives a stateful IPv6 address
from the DHCPv6 server.

IPv6 is supported only on KVM and XenServer hypervisors. The IPv6
support is only an experimental feature.

Here’s the sequence of events when IPv6 is used:

	The administrator creates an IPv6 shared network in an advanced zone.

	The user deploys a VM in an IPv6 shared network.

	The user VM generates an IPv6 link local address by itself, and gets
an IPv6 global or site local address through DHCPv6.

Prerequisites and Guidelines

Consider the following:

	CIDR size must be 64 for IPv6 networks.

	The DHCP client of the guest VMs should support generating DUID based
on Link-layer Address (DUID- LL). DUID-LL derives from the MAC
address of guest VMs, and therefore the user VM can be identified by
using DUID. See Dynamic Host Configuration Protocol for
IPv6 [http://tools.ietf.org/html/rfc3315]for more information.

	The gateway of the guest network generates Router Advisement and
Response messages to Router Solicitation. The M (Managed Address
Configuration) flag of Router Advisement should enable stateful IP
address configuration. Set the M flag to where the end nodes receive
their IPv6 addresses from the DHCPv6 server as opposed to the router
or switch.

Note

The M flag is the 1-bit Managed Address Configuration flag for Router

Advisement. When set, Dynamic Host Configuration Protocol (DHCPv6) is
available for address configuration in addition to any IPs set by
using stateless address auto-configuration.

	Use the System VM template exclusively designed to support IPv6.
Download the System VM template from
http://cloudstack.apt-get.eu/systemvm/.

	The concept of Default Network applies to IPv6 networks. However,
unlike IPv4 CloudStack does not control the routing information of
IPv6 in shared network; the choice of Default Network will not affect
the routing in the user VM.

	In a multiple shared network, the default route is set by the rack
router, rather than the DHCP server, which is out of CloudStack
control. Therefore, in order for the user VM to get only the default
route from the default NIC, modify the configuration of the user VM,
and set non-default NIC’s accept_ra to 0 explicitly. The
accept_ra parameter accepts Router Advertisements and
auto-configure /proc/sys/net/ipv6/conf/interface with received
data.

Limitations of IPv6 in CloudStack

The following are not yet supported:

	Security groups

	Userdata and metadata

	Passwords

Guest VM Configuration for DHCPv6

For the guest VMs to get IPv6 address, run dhclient command manually on
each of the VMs. Use DUID-LL to set up dhclient.

Note

The IPv6 address is lost when a VM is stopped and started. Therefore,

use the same procedure to get an IPv6 address when a VM is stopped and
started.

	Set up dhclient by using DUID-LL.

Perform the following for DHCP Client 4.2 and above:

	Run the following command on the selected VM to get the dhcpv6
offer from VR:

dhclient -6 -D LL <dev>

Perform the following for DHCP Client 4.1:

	Open the following to the dhclient configuration file:

vi /etc/dhcp/dhclient.conf

	Add the following to the dhclient configuration file:

send dhcp6.client-id = concat(00:03:00, hardware);

	Get IPv6 address from DHCP server as part of the system or network
restart.

Based on the operating systems, perform the following:

On CentOS 6.2:

	Open the Ethernet interface configuration file:

vi /etc/sysconfig/network-scripts/ifcfg-eth0

The ifcfg-eth0 file controls the first NIC in a system.

	Make the necessary configuration changes, as given below:

DEVICE=eth0
HWADDR=06:A0:F0:00:00:38
NM_CONTROLLED=no
ONBOOT=yes
BOOTPROTO=dhcp6
TYPE=Ethernet
USERCTL=no
PEERDNS=yes
IPV6INIT=yes
DHCPV6C=yes

	Open the following:

vi /etc/sysconfig/network

	Make the necessary configuration changes, as given below:

NETWORKING=yes
HOSTNAME=centos62mgmt.lab.vmops.com
NETWORKING_IPV6=yes
IPV6_AUTOCONF=no

On Ubuntu 12.10

	Open the following:

etc/network/interfaces:

	Make the necessary configuration changes, as given below:

iface eth0 inet6 dhcp
autoconf 0
accept_ra 1

Configuring AutoScale without using NetScaler

Avertissement

This feature is currently only available on the master branch and will be released in the 4.4 release.

What is AutoScaling?

AutoScaling allows you to scale your back-end services or application VMs up or down seamlessly and automatically according to the conditions you define. With AutoScaling enabled, you can ensure that the number of VMs you are using seamlessly scale up when demand increases, and automatically decreases when demand subsides. Thus it helps you save compute costs by terminating underused VMs automatically and launching new VMs when you need them, without the need for manual intervention.

Hypervisor support

At that time, AutoScaling without NetScaler only supports for Xenserver. We are working to support KVM also.

Prerequisites

Before you configure an AutoScale rule, consider the following:

	Ensure that the necessary template is prepared before configuring AutoScale. Firstly you must install the PV-driver, which helps Xenserver collect performance parameters (CPU and memory) into VMs. Beside, When a VM is deployed by using a template and when it comes up, the application should be up and running.

Configuration

Specify the following:

[image: ../_images/autoscale-config.png]

	Template: A template consists of a base OS image and application. A template is used to provision the new instance of an application on a scaleup action. When a VM is deployed from a template, the VM can start taking the traffic from the load balancer without any admin intervention. For example, if the VM is deployed for a Web service, it should have the Web server running, the database connected, and so on.

	Compute offering: A predefined set of virtual hardware attributes, including CPU speed, number of CPUs, and RAM size, that the user can select when creating a new virtual machine instance. Choose one of the compute offerings to be used while provisioning a VM instance as part of scaleup action.

	Min Instance: The minimum number of active VM instances that is assigned to a load balancing rule. The active VM instances are the application instances that are up and serving the traffic, and are being load balanced. This parameter ensures that a load balancing rule has at least the configured number of active VM instances are available to serve the traffic.

	Max Instance: Maximum number of active VM instances that should be assigned to a load balancing rule. This parameter defines the upper limit of active VM instances that can be assigned to a load balancing rule.

Specifying a large value for the maximum instance parameter might result in provisioning large number of VM instances, which in turn leads to a single load balancing rule exhausting the VM instances limit specified at the account or domain level.

Specify the following scale-up and scale-down policies:

	Duration: The duration, in seconds, for which the conditions you specify must be true to trigger a scaleup action. The conditions defined should hold true for the entire duration you specify for an AutoScale action to be invoked.

	Counter: The performance counters expose the state of the monitored instances. We added two new counter to work with that feature:

	Linux User CPU [native] - percentage

	Linux User RAM [native] - percentage

Remember to choose one of them. If you choose anything else, the autoscaling will not work.

	Operator: The following five relational operators are supported in AutoScale feature: Greater than, Less than, Less than or equal to, Greater than or equal to, and Equal to.

	Threshold: Threshold value to be used for the counter. Once the counter defined above breaches the threshold value, the AutoScale feature initiates a scaleup or scaledown action.

	Add: Click Add to add the condition.

Additionally, if you want to configure the advanced settings, click Show advanced settings, and specify the following:

	Polling interval: Frequency in which the conditions, combination of counter, operator and threshold, are to be evaluated before taking a scale up or down action. The default polling interval is 30 seconds.

	Quiet Time: This is the cool down period after an AutoScale action is initiated. The time includes the time taken to complete provisioning a VM instance from its template and the time taken by an application to be ready to serve traffic. This quiet time allows the fleet to come up to a stable state before any action can take place. The default is 300 seconds.

	Destroy VM Grace Period: The duration in seconds, after a scaledown action is initiated, to wait before the VM is destroyed as part of scaledown action. This is to ensure graceful close of any pending sessions or transactions being served by the VM marked for destroy. The default is 120 seconds.

	Apply: Click Apply to create the AutoScale configuration.

Disabling and Enabling an AutoScale Configuration

If you want to perform any maintenance operation on the AutoScale VM instances, disable the AutoScale configuration. When the AutoScale configuration is disabled, no scaleup or scaledown action is performed. You can use this downtime for the maintenance activities. To disable the AutoScale configuration, click the Disable AutoScale button.

The button toggles between enable and disable, depending on whether AutoScale is currently enabled or not. After the maintenance operations are done, you can enable the AutoScale configuration back. To enable, open the AutoScale configuration page again, then click the Enable AutoScale button.

Updating an AutoScale Configuration

You can update the various parameters and add or delete the conditions in a scaleup or scaledown rule. Before you update an AutoScale configuration, ensure that you disable the AutoScale load balancer rule by clicking the Disable AutoScale button.
After you modify the required AutoScale parameters, click Apply. To apply the new AutoScale policies, open the AutoScale configuration page again, then click the Enable AutoScale button.

Runtime Considerations

An administrator should not assign a VM to a load balancing rule which is configured for AutoScale.

Making API calls outside the context of AutoScale, such as destroyVM, on an autoscaled VM leaves the load balancing configuration in an inconsistent state. Though VM is destroyed from the load balancer rule, it continues be showed as a service assigned to a rule inside the context of AutoScale.

CloudStack Installation from Source for Developers

This book is aimed at CloudStack developers who need to build the code.
These instructions are valid on a Ubuntu 12.04 and CentOS 6.4 systems
and were tested with the 4.2 release of Apache CloudStack, please adapt
them if you are on a different operating system or using a newer/older
version of CloudStack. This book is composed of the following sections:

	Installation of the prerequisites

	Compiling and installation from source

	Using the CloudStack simulator

	Installation with DevCloud the CloudStack sandbox

	Building your own packages

	The CloudStack API

	Testing the AWS API interface

Prerequisites

In this section we’ll look at installing the dependencies you’ll need
for Apache CloudStack development.

On Ubuntu 12.04

First update and upgrade your system:

apt-get update
apt-get upgrade

NTP might already be installed, check it with service ntp status. If
it’s not then install NTP to synchronize the clocks:

apt-get install openntpd

Install openjdk. As we’re using Linux, OpenJDK is our first choice.

apt-get install openjdk-6-jdk

Install tomcat6, note that the new version of tomcat on
Ubuntu [http://packages.ubuntu.com/precise/all/tomcat6] is the
6.0.35 version.

apt-get install tomcat6

Next, we’ll install MySQL if it’s not already present on the system.

apt-get install mysql-server

Remember to set the correct mysql password in the CloudStack
properties file. Mysql should be running but you can check it’s status
with:

service mysql status

Developers wanting to build CloudStack from source will want to install
the following additional packages. If you dont’ want to build from
source just jump to the next section.

Install git to later clone the CloudStack source code:

apt-get install git

Install Maven to later build CloudStack

apt-get install maven

This should have installed Maven 3.0, check the version number with
mvn --version

A little bit of Python can be used (e.g simulator), install the Python
package management tools:

apt-get install python-pip python-setuptools

Finally install mkisofs with:

apt-get install genisoimage

On centOS 6.4

First update and upgrade your system:

yum -y update
yum -y upgrade

If not already installed, install NTP for clock synchornization

yum -y install ntp

Install openjdk. As we’re using Linux, OpenJDK is our first choice.

yum -y install java-1.6.0-openjdk

Install tomcat6, note that the version of tomcat6 in the default
CentOS 6.4 repo is 6.0.24, so we will grab the 6.0.35 version. The
6.0.24 version will be installed anyway as a dependency to cloudstack.

wget https://archive.apache.org/dist/tomcat/tomcat-6/v6.0.35/bin/apache-tomcat-6.0.35.tar.gz
tar xzvf apache-tomcat-6.0.35.tar.gz -C /usr/local

Setup tomcat6 system wide by creating a file
/etc/profile.d/tomcat.sh with the following content:

export CATALINA_BASE=/usr/local/apache-tomcat-6.0.35
export CATALINA_HOME=/usr/local/apache-tomcat-6.0.35

Next, we’ll install MySQL if it’s not already present on the system.

yum -y install mysql mysql-server

Remember to set the correct mysql password in the CloudStack
properties file. Mysql should be running but you can check it’s status
with:

service mysqld status

Install git to later clone the CloudStack source code:

yum -y install git

Install Maven to later build CloudStack. Grab the 3.0.5 release from
the Maven website [http://maven.apache.org/download.cgi]

wget http://mirror.cc.columbia.edu/pub/software/apache/maven/maven-3/3.0.5/binaries/apache-maven-3.0.5-bin.tar.gz
tar xzf apache-maven-3.0.5-bin.tar.gz -C /usr/local
cd /usr/local
ln -s apache-maven-3.0.5 maven

Setup Maven system wide by creating a /etc/profile.d/maven.sh file
with the following content:

export M2_HOME=/usr/local/maven
export PATH=${M2_HOME}/bin:${PATH}

Log out and log in again and you will have maven in your PATH:

mvn --version

This should have installed Maven 3.0, check the version number with
mvn --version

A little bit of Python can be used (e.g simulator), install the Python
package management tools:

yum -y install python-setuptools

To install python-pip you might want to setup the Extra Packages for
Enterprise Linux (EPEL) repo

cd /tmp
wget http://mirror-fpt-telecom.fpt.net/fedora/epel/6/i386/epel-release-6-8.noarch.rpm
rpm -ivh epel-release-6-8.noarch.rpm

Then update you repository cache yum update and install pip
yum -y install python-pip

Finally install mkisofs with:

yum -y install genisoimage

Installing from Source

CloudStack uses git for source version control, if you know little about
git [http://book.git-scm.com/] is a good start. Once you have git
setup on your machine, pull the source with:

git clone https://git-wip-us.apache.org/repos/asf/cloudstack.git

To build the latest stable release:

git checkout 4.2

To compile Apache CloudStack, go to the cloudstack source folder and
run:

mvn -Pdeveloper,systemvm clean install

If you want to skip the tests add -DskipTests to the command above.
Do NOT use -Dmaven.test.skip=true because that will break the build.

You will have made sure to set the proper db password in
utils/conf/db.properties

Deploy the database next:

mvn -P developer -pl developer -Ddeploydb

Run Apache CloudStack with jetty for testing. Note that tomcat maybe
be running on port 8080, stop it before you use jetty

mvn -pl :cloud-client-ui jetty:run

Log Into Apache CloudStack:

Open your Web browser and use this URL to connect to CloudStack:

http://localhost:8080/client/

Replace localhost with the IP of your management server if need be.

Note

If you have iptables enabled, you may have to open the ports used by CloudStack. Specifically, ports 8080, 8250, and 9090.

You can now start configuring a Zone, playing with the API. Of course we
did not setup any infrastructure, there is no storage, no
hypervisors...etc. However you can run tests using the simulator. The
following section shows you how to use the simulator so that you don’t
have to setup a physical infrastructure.

Using the Simulator

CloudStack comes with a simulator based on Python bindings called
Marvin. Marvin is available in the CloudStack source code or on Pypi.
With Marvin you can simulate your data center infrastructure by
providing CloudStack with a configuration file that defines the number
of zones/pods/clusters/hosts, types of storage etc. You can then develop
and test the CloudStack management server as if it was managing your
production infrastructure.

Do a clean build:

mvn -Pdeveloper -Dsimulator -DskipTests clean install

Deploy the database:

mvn -Pdeveloper -pl developer -Ddeploydb
mvn -Pdeveloper -pl developer -Ddeploydb-simulator

Install marvin. Note that you will need to have installed pip
properly in the prerequisites step.

pip install tools/marvin/dist/Marvin-0.1.0.tar.gz

Stop jetty (from any previous runs)

mvn -pl :cloud-client-ui jetty:stop

Start jetty

mvn -pl client jetty:run

Setup a basic zone with Marvin. In a separate shell://

mvn -Pdeveloper,marvin.setup -Dmarvin.config=setup/dev/basic.cfg -pl :cloud-marvin integration-test

At this stage log in the CloudStack management server at
http://localhost:8080/client with the credentials admin/password, you
should see a fully configured basic zone infrastructure. To simulate an
advanced zone replace basic.cfg with advanced.cfg.

You can now run integration tests, use the API etc...

Using DevCloud

The Installing from source section will only get you to the point of
runnign the management server, it does not get you any hypervisors. The
simulator section gets you a simulated datacenter for testing. With
DevCloud you can run at least one hypervisor and add it to your
management server the way you would a real physical machine.

DevCloud [https://cwiki.apache.org/confluence/display/CLOUDSTACK/DevCloud]
is the CloudStack sandbox, the standard version is a VirtualBox based
image. There is also a KVM based image for it. Here we only show steps
with the VirtualBox image. For KVM see the
wiki [https://cwiki.apache.org/confluence/display/CLOUDSTACK/devcloud-kvm].

** DevCloud Pre-requisites

	Install VirtualBox [http://www.virtualbox.org] on your machine

	Run VirtualBox and under >Preferences create a host-only interface
on which you disable the DHCP server

	Download the DevCloud
image [http://people.apache.org/~bhaisaab/cloudstack/devcloud/devcloud2.ova]

	In VirtualBox, under File > Import Appliance import the DevCloud
image.

	Verify the settings under > Settings and check the enable PAE
option in the processor menu

	Once the VM has booted try to ssh to it with credentials:
root/password

ssh root@192.168.56.10

Adding DevCloud as an Hypervisor

Picking up from a clean build:

mvn -Pdeveloper,systemvm clean install
mvn -P developer -pl developer,tools/devcloud -Ddeploydb

At this stage install marvin similarly than with the simulator:

pip install tools/marvin/dist/Marvin-0.1.0.tar.gz

Start the management server

mvn -pl client jetty:run

Then you are going to configure CloudStack to use the running DevCloud
instance:

cd tools/devcloud
python ../marvin/marvin/deployDataCenter.py -i devcloud.cfg

If you are curious, check the devcloud.cfg file and see how the data
center is defined: 1 Zone, 1 Pod, 1 Cluster, 1 Host, 1 primary Storage,
1 Seondary Storage, all provided by Devcloud.

You can now log in the management server at
http://localhost:8080/client and start experimenting with the UI or
the API.

Do note that the management server is running in your local machine and
that DevCloud is used only as a n Hypervisor. You could potentially run
the management server within DevCloud as well, or memory granted, run
multiple DevClouds.

Building Packages

Working from source is necessary when developing CloudStack. As
mentioned earlier this is not primarily intended for users. However some
may want to modify the code for their own use and specific
infrastructure. The may also need to build their own packages for
security reasons and due to network connectivity constraints. This
section shows you the gist of how to build packages. We assume that the
reader will know how to create a repository to serve this packages. The
complete documentation is available on the
website [http://cloudstack.apache.org/docs/en-US/Apache_CloudStack/4.2.0/html/Installation_Guide/sect-source-builddebs.html]

To build debian packages you will need couple extra packages that we did
not need to install for source compilation:

apt-get install python-mysqldb
apt-get install debhelper

Then build the packages with:

dpkg-buildpackage -uc -us

One directory up from the CloudStack root dir you will find:

cloudstack_4.2.0_amd64.changes
cloudstack_4.2.0.dsc
cloudstack_4.2.0.tar.gz
cloudstack-agent_4.2.0_all.deb
cloudstack-awsapi_4.2.0_all.deb
cloudstack-cli_4.2.0_all.deb
cloudstack-common_4.2.0_all.deb
cloudstack-docs_4.2.0_all.deb
cloudstack-management_4.2.0_all.deb
cloudstack-usage_4.2.0_all.deb

Of course the community provides a repository for these packages and you
can use it instead of building your own packages and putting them in
your own repo. Instructions on how to use this community repository are
available in the installation book.

The CloudStack API

The CloudStack API is a query based API using http that return results
in XML or JSON. It is used to implement the default web UI. This API is
not a standard like OGF
OCCI [http://www.ogf.org/gf/group_info/view.php?group=occi-wg] or
DMTF CIMI [http://dmtf.org/standards/cloud] but is easy to learn.
Mapping exists between the AWS API and the CloudStack API as will be
seen in the next section. Recently a Google Compute Engine interface was
also developed that maps the GCE REST API to the CloudStack API
described here. The API
docs [http://cloudstack.apache.org/docs/api/] are a good start to
learn the extent of the API. Multiple clients exist on
github [https://github.com/search?q=cloudstack+client&ref=cmdform]
to use this API, you should be able to find one in your favorite
language. The reference documentation for the API and changes that might
occur from version to version is availble
on-line [http://cloudstack.apache.org/docs/en-US/Apache_CloudStack/4.1.1/html/Developers_Guide/index.html].
This short section is aimed at providing a quick summary to give you a
base understanding of how to use this API. As a quick start, a good way
to explore the API is to navigate the dashboard with a firebug console
(or similar developer console) to study the queries.

In a succint statement, the CloudStack query API can be used via http
GET requests made against your cloud endpoint (e.g
http://localhost:8080/client/api). The API name is passed using the
command key and the various parameters for this API call are passed
as key value pairs. The request is signed using the access key and
secret key of the user making the call. Some calls are synchronous while
some are asynchronous, this is documented in the API
docs [http://cloudstack.apache.org/docs/api/]. Asynchronous calls
return a jobid, the status and result of a job can be queried with
the queryAsyncJobResult call. Let’s get started and give an example
of calling the listUsers API in Python.

First you will need to generate keys to make requests. Going through the
dashboard, go under Accounts select the appropriate account then
click on Show Users select the intended users and generate keys
using the Generate Keys icon. You will see an API Key and
Secret Key field being generated. The keys will be of the form:

API Key : XzAz0uC0t888gOzPs3HchY72qwDc7pUPIO8LxC-VkIHo4C3fvbEBY_Ccj8fo3mBapN5qRDg_0_EbGdbxi8oy1A
Secret Key: zmBOXAXPlfb-LIygOxUVblAbz7E47eukDS_0JYUxP3JAmknOYo56T0R-AcM7rK7SMyo11Y6XW22gyuXzOdiybQ

Open a Python shell and import the basic modules necessary to make the
request. Do note that this request could be made many different ways,
this is just a low level example. The urllib* modules are used to
make the http request and do url encoding. The hashlib module gives
us the sha1 hash function. It used to geenrate the hmac (Keyed
Hashing for Message Authentication) using the secretkey. The result is
encoded using the base64 module.

$python
Python 2.7.3 (default, Nov 17 2012, 19:54:34)
[GCC 4.2.1 Compatible Apple Clang 4.1 ((tags/Apple/clang-421.11.66))] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import urllib2
>>> import urllib
>>> import hashlib
>>> import hmac
>>> import base64

Define the endpoint of the Cloud, the command that you want to execute,
the type of the response (i.e XML or JSON) and the keys of the user.
Note that we do not put the secretkey in our request dictionary because
it is only used to compute the hmac.

>>> baseurl='http://localhost:8080/client/api?'
>>> request={}
>>> request['command']='listUsers'
>>> request['response']='json'
>>> request['apikey']='plgWJfZK4gyS3mOMTVmjUVg-X-jlWlnfaUJ9GAbBbf9EdM-kAYMmAiLqzzq1ElZLYq_u38zCm0bewzGUdP66mg'
>>> secretkey='VDaACYb0LV9eNjTetIOElcVQkvJck_J_QljX_FcHRj87ZKiy0z0ty0ZsYBkoXkY9b7eq1EhwJaw7FF3akA3KBQ'

Build the base request string, the combination of all the key/pairs of
the request, url encoded and joined with ampersand.

>>> request_str='&'.join(['='.join([k,urllib.quote_plus(request[k])]) for k in request.keys()])
>>> request_str
'apikey=plgWJfZK4gyS3mOMTVmjUVg-X-jlWlnfaUJ9GAbBbf9EdM-kAYMmAiLqzzq1ElZLYq_u38zCm0bewzGUdP66mg&command=listUsers&response=json'

Compute the signature with hmac, do a 64 bit encoding and a url
encoding, the string used for the signature is similar to the base
request string shown above but the keys/values are lower cased and
joined in a sorted order

>>> sig_str='&'.join(['='.join([k.lower(),urllib.quote_plus(request[k].lower().replace('+','%20'))])for k in sorted(request.iterkeys())])
>>> sig_str
'apikey=plgwjfzk4gys3momtvmjuvg-x-jlwlnfauj9gabbbf9edm-kaymmailqzzq1elzlyq_u38zcm0bewzgudp66mg&command=listusers&response=json'
>>> sig=hmac.new(secretkey,sig_str,hashlib.sha1).digest()
>>> sig
'M:]\x0e\xaf\xfb\x8f\xf2y\xf1p\x91\x1e\x89\x8a\xa1\x05\xc4A\xdb'
>>> sig=base64.encodestring(hmac.new(secretkey,sig_str,hashlib.sha1).digest())
>>> sig
'TTpdDq/7j/J58XCRHomKoQXEQds=\n'
>>> sig=base64.encodestring(hmac.new(secretkey,sig_str,hashlib.sha1).digest()).strip()
>>> sig
'TTpdDq/7j/J58XCRHomKoQXEQds='
>>> sig=urllib.quote_plus(base64.encodestring(hmac.new(secretkey,sig_str,hashlib.sha1).digest()).strip())

Finally, build the entire string by joining the baseurl, the request str
and the signature. Then do an http GET:

>>> req=baseurl+request_str+'&signature='+sig
>>> req
'http://localhost:8080/client/api?apikey=plgWJfZK4gyS3mOMTVmjUVg-X-jlWlnfaUJ9GAbBbf9EdM-kAYMmAiLqzzq1ElZLYq_u38zCm0bewzGUdP66mg&command=listUsers&response=json&signature=TTpdDq%2F7j%2FJ58XCRHomKoQXEQds%3D'
>>> res=urllib2.urlopen(req)
>>> res.read()
'{ "listusersresponse" : { "count":1 ,"user" : [{"id":"7ed6d5da-93b2-4545-a502-23d20b48ef2a","username":"admin","firstname":"admin",
 "lastname":"cloud","created":"2012-07-05T12:18:27-0700","state":"enabled","account":"admin",
 "accounttype":1,"domainid":"8a111e58-e155-4482-93ce-84efff3c7c77","domain":"ROOT",
 "apikey":"plgWJfZK4gyS3mOMTVmjUVg-X-jlWlnfaUJ9GAbBbf9EdM-kAYMmAiLqzzq1ElZLYq_u38zCm0bewzGUdP66mg",
 "secretkey":"VDaACYb0LV9eNjTetIOElcVQkvJck_J_QljX_FcHRj87ZKiy0z0ty0ZsYBkoXkY9b7eq1EhwJaw7FF3akA3KBQ",
 "accountid":"7548ac03-af1d-4c1c-9064-2f3e2c0eda0d"}]}}

All the clients that you will find on github will implement this
signature technique, you should not have to do it by hand. Now that you
have explored the API through the UI and that you understand how to make
low level calls, pick your favorite client of use
CloudMonkey [https://pypi.python.org/pypi/cloudmonkey/]. CloudMonkey
is a sub-project of Apache CloudStack and gives operators/developers the
ability to use any of the API methods. It has nice auto-completion and
help feature as well as an API discovery mechanism since 4.2.

Testing the AWS API interface

While the native CloudStack API is not a standard, CloudStack provides a
AWS EC2 compatible interface. It has the great advantage that existing
tools written with EC2 libraries can be re-used against a CloudStack
based cloud. In the installation books we described how to run this
interface from installing packages. In this section we show you how to
compile the interface with maven and test it with Python boto
module.

Starting from a running management server (with DevCloud for instance),
start the AWS API interface in a separate shell with:

mvn -Pawsapi -pl :cloud-awsapi jetty:run

Log into the CloudStack UI http://localhost:8080/client, go to
Service Offerings and edit one of the compute offerings to have the
name m1.small or any of the other AWS EC2 instance types.

With access and secret keys generated for a user you should now be able
to use Python Boto [http://docs.pythonboto.org/en/latest/] module:

import boto
import boto.ec2

accesskey="2IUSA5xylbsPSnBQFoWXKg3RvjHgsufcKhC1SeiCbeEc0obKwUlwJamB_gFmMJkFHYHTIafpUx0pHcfLvt-dzw"
secretkey="oxV5Dhhk5ufNowey7OVHgWxCBVS4deTl9qL0EqMthfPBuy3ScHPo2fifDxw1aXeL5cyH10hnLOKjyKphcXGeDA"

region = boto.ec2.regioninfo.RegionInfo(name="ROOT", endpoint="localhost")
conn = boto.connect_ec2(aws_access_key_id=accesskey, aws_secret_access_key=secretkey, is_secure=False, region=region, port=7080, path="/awsapi", api_version="2012-08-15")

images=conn.get_all_images()
print images

res = images[0].run(instance_type='m1.small',security_groups=['default'])

Note the new api_version number in the connection object and also
note that there was no user registration to make like in previous
CloudStack releases.

Conclusions

CloudStack is a mostly Java application running with Tomcat and Mysql.
It consists of a management server and depending on the hypervisors
being used, an agent installed on the hypervisor farm. To complete a
Cloud infrastructure however you will also need some Zone wide storage
a.k.a Secondary Storage and some Cluster wide storage a.k.a Primary
storage. The choice of hypervisor, storage solution and type of Zone
(i.e Basic vs. Advanced) will dictate how complex your installation can
be. As a quick start, you might want to consider KVM+NFS and a Basic
Zone.

If you’ve run into any problems with this, please ask on the
cloudstack-dev mailing list.

Programmer Guide

This guide shows how to develop CloudStack, use the API for operation
and integration, access the usage data and use CloudStack specific tools
to ease development, testing and integration.

The CloudStack API

Getting Started

To get started using the CloudStack API, you should have the following:

	URL of the CloudStack server you wish to integrate with.

	Both the API Key and Secret Key for an account. This should have been
generated by the administrator of the cloud instance and given to
you.

	Familiarity with HTTP GET/POST and query strings.

	Knowledge of either XML or JSON.

	Knowledge of a programming language that can generate HTTP requests;
for example, Java or PHP.

Roles

The CloudStack API supports three access roles:

	Root Admin. Access to all features of the cloud, including both
virtual and physical resource management.

	Domain Admin. Access to only the virtual resources of the clouds that
belong to the administrator’s domain.

	User. Access to only the features that allow management of the user’s
virtual instances, storage, and network.

API Reference Documentation

You can find all the API reference documentation at the below site:

http://cloudstack.apache.org/docs/api/

Making API Requests

All CloudStack API requests are submitted in the form of a HTTP GET/POST
with an associated command and any parameters. A request is composed of
the following whether in HTTP or HTTPS:

	CloudStack API URL: This is the web services API entry point(for
example, http://www.cloud.com:8080/client/api)

	Command: The web services command you wish to execute, such as start
a virtual machine or create a disk volume

	Parameters: Any additional required or optional parameters for the
command

A sample API GET request looks like the following:

http://localhost:8080/client/api?command=deployVirtualMachine&serviceOfferingId=1&diskOfferingId=1&templateId=2&zoneId=4&apiKey=miVr6X7u6bN_sdahOBpjNejPgEsT35eXq-jB8CG20YI3yaxXcgpyuaIRmFI_EJTVwZ0nUkkJbPmY3y2bciKwFQ&signature=Lxx1DM40AjcXU%2FcaiK8RAP0O1hU%3D

Or in a more readable format:

1. http://localhost:8080/client/api
2. ?command=deployVirtualMachine
3. &serviceOfferingId=1
4. &diskOfferingId=1
5. &templateId=2
6. &zoneId=4
7. &apiKey=miVr6X7u6bN_sdahOBpjNejPgEsT35eXqjB8CG20YI3yaxXcgpyuaIRmFI_EJTVwZ0nUkkJbPmY3y2bciKwFQ
8. &signature=Lxx1DM40AjcXU%2FcaiK8RAP0O1hU%3D

The first line is the CloudStack API URL. This is the Cloud instance you
wish to interact with.

The second line refers to the command you wish to execute. In our
example, we are attempting to deploy a fresh new virtual machine. It is
preceded by a (?) to separate itself from the CloudStack API URL.

Lines 3-6 are the parameters for this given command. To see the command
and its request parameters, please refer to the appropriate section in
the CloudStack API documentation. Each parameter field-value pair
(field=value) is preceded by an ampersand character (&).

Line 7 is the user API Key that uniquely identifies the account. See
Signing API Requests on page 7.

Line 8 is the signature hash created to authenticate the user account
executing the API command.

Signing API Requests

Whether you access the CloudStack API with HTTP or HTTPS, it must still
be signed so that CloudStack can verify the caller has been
authenticated and authorized to execute the command. Make sure that you
have both the API Key and Secret Key provided by the CloudStack
administrator for your account before proceeding with the signing
process.

To show how to sign a request, we will re-use the previous example.

http://http://localhost:8080/client/api?command=deployVirtualMachine&serviceOfferingId=1&diskOfferingId=1&templateId=2&zoneId=4&apiKey=miVr6X7u6bN_sdahOBpjNejPgEsT35eXq-jB8CG20YI3yaxXcgpyuaIRmFI_EJTVwZ0nUkkJbPmY3y2bciKwFQ&signature=Lxx1DM40AjcXU%2FcaiK8RAP0O1hU%3D

Breaking this down, we have several distinct parts to this URL.

	Base URL: This is the base URL to the CloudStack Management Server.

http://localhost:8080

	API Path: This is the path to the API Servlet that processes the
incoming requests.

/client/api?

	Command String: This part of the query string comprises of the
command, its parameters, and the API Key that identifies the account.

Note

As with all query string parameters of field-value pairs, the “field”

component is case insensitive while all “value” values are case sensitive.

command=deployVirtualMachine&serviceOfferingId=1&diskOfferingId=1&templateId=2&zoneId=4&apiKey=miVr6X7u6bN_sdahOBpjNejPgEsT35eXq-jB8CG20YI3yaxXcgpyuaIRmFI_EJTVwZ0nUkkJbPmY3y2bciKwFQ

	Signature: This is the signature of the command string that is
generated using a combination of the user’s Secret Key and the HMAC
SHA-1 hashing algorithm.

&signature=Lxx1DM40AjcXU%2FcaiK8RAP0O1hU%3D

Every API request has the format Base URL+API Path+Command
String+Signature.

To generate the signature.

	For each field-value pair (as separated by a ‘&’) in the Command
String, URL encode each value so that it can be safely sent via HTTP
GET.

Note

Make sure all spaces are encoded as “%20” rather than “+”.

	Lower case the entire Command String and sort it alphabetically via
the field for each field-value pair. The result of this step would
look like the following.

	Take the sorted Command String and run it through the HMAC SHA-1
hashing algorithm (most programming languages offer a utility method
to do this) with the user’s Secret Key. Base64 encode the resulting
byte array in UTF-8 so that it can be safely transmitted via HTTP.
The final string produced after Base64 encoding should be
“Lxx1DM40AjcXU%2FcaiK8RAP0O1hU%3D”.

By reconstructing the final URL in the format Base URL+API
Path+Command String+Signature, the final URL should look like:

	::

	http://localhost:8080/client/api?command=deployVirtualMachine&serviceOfferingId=1&diskOfferingId=1&templateId=2&zoneId=4&apiKey=miVr6X7u6bN_sdahOBpjNejPgEsT35eXq-jB8CG20YI3yaxXcgpyuaIRmFI_EJTVwZ0nUkkJbPmY3y2bciKwFQ&signature=Lxx1DM40AjcXU%2FcaiK8RAP0O1hU%3D

How to sign an API call with Python

To illustrate the procedure used to sign API calls we present a step by
step interactive session using Python.

First import the required modules:

$python
Python 2.7.3 (default, Nov 17 2012, 19:54:34)
[GCC 4.2.1 Compatible Apple Clang 4.1 ((tags/Apple/clang-421.11.66))] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import urllib2
>>> import urllib
>>> import hashlib
>>> import hmac
>>> import base64

Define the endpoint of the Cloud, the command that you want to execute
and the keys of the user.

>>> baseurl='http://localhost:8080/client/api?'
>>> request={}
>>> request['command']='listUsers'
>>> request['response']='json'
>>> request['apikey']='plgWJfZK4gyS3mOMTVmjUVg-X-jlWlnfaUJ9GAbBbf9EdM-kAYMmAiLqzzq1ElZLYq_u38zCm0bewzGUdP66mg'
>>> secretkey='VDaACYb0LV9eNjTetIOElcVQkvJck_J_QljX_FcHRj87ZKiy0z0ty0ZsYBkoXkY9b7eq1EhwJaw7FF3akA3KBQ'

Build the request string:

>>> request_str='&'.join(['='.join([k,urllib.quote_plus(request[k])]) for k in request.keys()])
>>> request_str
'apikey=plgWJfZK4gyS3mOMTVmjUVg-X-jlWlnfaUJ9GAbBbf9EdM-kAYMmAiLqzzq1ElZLYq_u38zCm0bewzGUdP66mg&command=listUsers&response=json'

Compute the signature with hmac, do a 64 bit encoding and a url
encoding:

>>> sig_str='&'.join(['='.join([k.lower(),urllib.quote_plus(request[k].lower().replace('+','%20'))])for k in sorted(request.iterkeys())])
>>> sig_str 'apikey=plgwjfzk4gys3momtvmjuvg-x-jlwlnfauj9gabbbf9edm-kaymmailqzzq1elzlyq_u38zcm0bewzgudp66mg&command=listusers&response=json'
>>> sig=hmac.new(secretkey,sig_str,hashlib.sha1)
>>> sig
<hmac.HMAC instance at 0x10d91d680>
>>> sig=hmac.new(secretkey,sig_str,hashlib.sha1).digest()
>>> sig
'M:]\x0e\xaf\xfb\x8f\xf2y\xf1p\x91\x1e\x89\x8a\xa1\x05\xc4A\xdb'
>>> sig=base64.encodestring(hmac.new(secretkey,sig_str,hashlib.sha1).digest())
>>> sig
'TTpdDq/7j/J58XCRHomKoQXEQds=\n'
>>> sig=base64.encodestring(hmac.new(secretkey,sig_str,hashlib.sha1).digest()).strip()
>>> sig
'TTpdDq/7j/J58XCRHomKoQXEQds='
>>> sig=urllib.quote_plus(base64.encodestring(hmac.new(secretkey,sig_str,hashlib.sha1).digest()).strip())

Finally, build the entire string and do an http GET:

>>> req=baseurl+request_str+'&signature='+sig
>>> req
'http://localhost:8080/client/api?apikey=plgWJfZK4gyS3mOMTVmjUVg-X-jlWlnfaUJ9GAbBbf9EdM-kAYMmAiLqzzq1ElZLYq_u38zCm0bewzGUdP66mg&command=listUsers&response=json&signature=TTpdDq%2F7j%2FJ58XCRHomKoQXEQds%3D'
>>> res=urllib2.urlopen(req)
>>> res.read()
'{ "listusersresponse" : { "count":3 ,"user" : [{"id":"7ed6d5da-93b2-4545-a502-23d20b48ef2a","username":"admin","firstname":"admin","lastname":"cloud","created":"2012-07-05T12:18:27-0700","state":"enabled","account":"admin","accounttype":1,"domainid":"8a111e58-e155-4482-93ce-84efff3c7c77","domain":"ROOT","apikey":"plgWJfZK4gyS3mOMTVmjUVg-X-jlWlnfaUJ9GAbBbf9EdM-kAYMmAiLqzzq1ElZLYq_u38zCm0bewzGUdP66mg","secretkey":"VDaACYb0LV9eNjTetIOElcVQkvJck_J_QljX_FcHRj87ZKiy0z0ty0ZsYBkoXkY9b7eq1EhwJaw7FF3akA3KBQ","accountid":"7548ac03-af1d-4c1c-9064-2f3e2c0eda0d"}, {"id":"1fea6418-5576-4989-a21e-4790787bbee3","username":"runseb","firstname":"foobar","lastname":"goa","email":"joe@smith.com","created":"2013-04-10T16:52:06-0700","state":"enabled","account":"admin","accounttype":1,"domainid":"8a111e58-e155-4482-93ce-84efff3c7c77","domain":"ROOT","apikey":"Xhsb3MewjJQaXXMszRcLvQI9_NPy_UcbDj1QXikkVbDC9MDSPwWdtZ1bUY1H7JBEYTtDDLY3yuchCeW778GkBA","secretkey":"gIsgmi8C5YwxMHjX5o51pSe0kqs6JnKriw0jJBLceY5bgnfzKjL4aM6ctJX-i1ddQIHJLbLJDK9MRzsKk6xZ_w","accountid":"7548ac03-af1d-4c1c-9064-2f3e2c0eda0d"}, {"id":"52f65396-183c-4473-883f-a37e7bb93967","username":"toto","firstname":"john","lastname":"smith","email":"john@smith.com","created":"2013-04-23T04:27:22-0700","state":"enabled","account":"admin","accounttype":1,"domainid":"8a111e58-e155-4482-93ce-84efff3c7c77","domain":"ROOT","apikey":"THaA6fFWS_OmvU8od201omxFC8yKNL_Hc5ZCS77LFCJsRzSx48JyZucbUul6XYbEg-ZyXMl_wuEpECzK-wKnow","secretkey":"O5ywpqJorAsEBKR_5jEvrtGHfWL1Y_j1E4Z_iCr8OKCYcsPIOdVcfzjJQ8YqK0a5EzSpoRrjOFiLsG0hQrYnDA","accountid":"7548ac03-af1d-4c1c-9064-2f3e2c0eda0d"}] } }'

Enabling API Call Expiration

You can set an expiry timestamp on API calls to prevent replay attacks
over non-secure channels, such as HTTP. The server tracks the expiry
timestamp you have specified and rejects all the subsequent API requests
that come in after this validity period.

To enable this feature, add the following parameters to the API request:

	signatureVersion=3: If the signatureVersion parameter is missing or
is not equal to 3, the expires parameter is ignored in the API
request.

	expires=YYYY-MM-DDThh:mm:ssZ: Specifies the date and time at which
the signature included in the request is expired. The timestamp is
expressed in the YYYY-MM-DDThh:mm:ssZ format, as specified in the ISO
8601 standard.

For example:

expires=2011-10-10T12:00:00+0530

A sample API request with expiration is given below:

http://<IPAddress>:8080/client/api?command=listZones&signatureVersion=3&expires=2011-10-10T12:00:00+0530&apiKey=miVr6X7u6bN_sdahOBpjNejPgEsT35eXq-jB8CG20YI3yaxXcgpyuaIRmFI_EJTVwZ0nUkkJbPmY3y2bciKwFQ&signature=Lxx1DM40AjcXU%2FcaiK8RAP0O1hU%3D

Limiting the Rate of API Requests

You can limit the rate at which API requests can be placed for each
account. This is useful to avoid malicious attacks on the Management
Server, prevent performance degradation, and provide fairness to all
accounts.

If the number of API calls exceeds the threshold, an error message is
returned for any additional API calls. The caller will have to retry
these API calls at another time.

Configuring the API Request Rate

To control the API request rate, use the following global configuration
settings:

	api.throttling.enabled - Enable/Disable API throttling. By default,
this setting is false, so API throttling is not enabled.

	api.throttling.interval (in seconds) - Time interval during which the
number of API requests is to be counted. When the interval has
passed, the API count is reset to 0.

	api.throttling.max - Maximum number of APIs that can be placed within
the api.throttling.interval period.

	api.throttling.cachesize - Cache size for storing API counters. Use a
value higher than the total number of accounts managed by the cloud.
One cache entry is needed for each account, to store the running API
total for that account.

Limitations on API Throttling

The following limitations exist in the current implementation of this
feature.

Note

Even with these limitations, CloudStack is still able to effectively use

API throttling to avoid malicious attacks causing denial of service.

	In a deployment with multiple Management Servers, the cache is not
synchronized across them. In this case, CloudStack might not be able
to ensure that only the exact desired number of API requests are
allowed. In the worst case, the number of API calls that might be
allowed is (number of Management Servers) * (api.throttling.max).

	The API commands resetApiLimit and getApiLimit are limited to the
Management Server where the API is invoked.

API Responses

Response Formats: XML and JSON

CloudStack supports two formats as the response to an API call. The
default response is XML. If you would like the response to be in JSON,
add &response=json to the Command String.

The two response formats differ in how they handle blank fields. In
JSON, if there is no value for a response field, it will not appear in
the response. If all the fields were empty, there might be no response
at all. In XML, even if there is no value to be returned, an empty field
will be returned as a placeholder XML element.

Sample XML Response:

<listipaddressesresponse>
 <allocatedipaddress>
 <ipaddress>192.168.10.141</ipaddress>
 <allocated>2009-09-18T13:16:10-0700</allocated>
 <zoneid>4</zoneid>
 <zonename>WC</zonename>
 <issourcenat>true</issourcenat>
 </allocatedipaddress>
</listipaddressesresponse>

Sample JSON Response:

{ "listipaddressesresponse" :
 { "allocatedipaddress" :
 [
 {
 "ipaddress" : "192.168.10.141",
 "allocated" : "2009-09-18T13:16:10-0700",
 "zoneid" : "4",
 "zonename" : "WC",
 "issourcenat" : "true"
 }
]
 }
}

Maximum Result Pages Returned

For each cloud, there is a default upper limit on the number of results
that any API command will return in a single page. This is to help
prevent overloading the cloud servers and prevent DOS attacks. For
example, if the page size limit is 500 and a command returns 10,000
results, the command will return 20 pages.

The default page size limit can be different for each cloud. It is set
in the global configuration parameter default.page.size. If your cloud
has many users with lots of VMs, you might need to increase the value of
this parameter. At the same time, be careful not to set it so high that
your site can be taken down by an enormous return from an API call. For
more information about how to set global configuration parameters, see
“Describe Your Deployment” in the Installation Guide.

To decrease the page size limit for an individual API command, override
the global setting with the page and pagesize parameters, which are
available in any list* command (listCapabilities, listDiskOfferings,
etc.).

	Both parameters must be specified together.

	The value of the pagesize parameter must be smaller than the value of
default.page.size. That is, you can not increase the number of
possible items in a result page, only decrease it.

For syntax information on the list* commands, see the API Reference.

Error Handling

If an error occurs while processing an API request, the appropriate
response in the format specified is returned. Each error response
consists of an error code and an error text describing what possibly can
go wrong. Below is a list of possible error codes:

You can now find the CloudStack-specific error code in the exception
response for each type of exception. The following list of error codes
is added to the new class named CSExceptionErrorCode.

4250 : “com.cloud.utils.exception.CloudRuntimeException”

4255 : “com.cloud.utils.exception.ExceptionUtil”

4260 : “com.cloud.utils.exception.ExecutionException”

4265 : “com.cloud.utils.exception.HypervisorVersionChangedException”

4270 : “com.cloud.utils.exception.RuntimeCloudException”

4275 : “com.cloud.exception.CloudException”

4280 : “com.cloud.exception.AccountLimitException”

4285 : “com.cloud.exception.AgentUnavailableException”

4290 : “com.cloud.exception.CloudAuthenticationException”

4295 : “com.cloud.exception.CloudExecutionException”

4300 : “com.cloud.exception.ConcurrentOperationException”

4305 : “com.cloud.exception.ConflictingNetworkSettingsException”

4310 : “com.cloud.exception.DiscoveredWithErrorException”

4315 : “com.cloud.exception.HAStateException”

4320 : “com.cloud.exception.InsufficientAddressCapacityException”

4325 : “com.cloud.exception.InsufficientCapacityException”

4330 : “com.cloud.exception.InsufficientNetworkCapacityException”

4335 : “com.cloud.exception.InsufficientServerCapacityException”

4340 : “com.cloud.exception.InsufficientStorageCapacityException”

4345 : “com.cloud.exception.InternalErrorException”

4350 : “com.cloud.exception.InvalidParameterValueException”

4355 : “com.cloud.exception.ManagementServerException”

4360 : “com.cloud.exception.NetworkRuleConflictException”

4365 : “com.cloud.exception.PermissionDeniedException”

4370 : “com.cloud.exception.ResourceAllocationException”

4375 : “com.cloud.exception.ResourceInUseException”

4380 : “com.cloud.exception.ResourceUnavailableException”

4385 : “com.cloud.exception.StorageUnavailableException”

4390 : “com.cloud.exception.UnsupportedServiceException”

4395 : “com.cloud.exception.VirtualMachineMigrationException”

4400 : “com.cloud.exception.AccountLimitException”

4405 : “com.cloud.exception.AgentUnavailableException”

4410 : “com.cloud.exception.CloudAuthenticationException”

4415 : “com.cloud.exception.CloudException”

4420 : “com.cloud.exception.CloudExecutionException”

4425 : “com.cloud.exception.ConcurrentOperationException”

4430 : “com.cloud.exception.ConflictingNetworkSettingsException”

4435 : “com.cloud.exception.ConnectionException”

4440 : “com.cloud.exception.DiscoveredWithErrorException”

4445 : “com.cloud.exception.DiscoveryException”

4450 : “com.cloud.exception.HAStateException”

4455 : “com.cloud.exception.InsufficientAddressCapacityException”

4460 : “com.cloud.exception.InsufficientCapacityException”

4465 : “com.cloud.exception.InsufficientNetworkCapacityException”

4470 : “com.cloud.exception.InsufficientServerCapacityException”

4475 : “com.cloud.exception.InsufficientStorageCapacityException”

4480 : “com.cloud.exception.InsufficientVirtualNetworkCapcityException”

4485 : “com.cloud.exception.InternalErrorException”

4490 : “com.cloud.exception.InvalidParameterValueException”

4495 : “com.cloud.exception.ManagementServerException”

4500 : “com.cloud.exception.NetworkRuleConflictException”

4505 : “com.cloud.exception.PermissionDeniedException”

4510 : “com.cloud.exception.ResourceAllocationException”

4515 : “com.cloud.exception.ResourceInUseException”

4520 : “com.cloud.exception.ResourceUnavailableException”

4525 : “com.cloud.exception.StorageUnavailableException”

4530 : “com.cloud.exception.UnsupportedServiceException”

4535 : “com.cloud.exception.VirtualMachineMigrationException”

9999 : “org.apache.cloudstack.api.ServerApiException”

An HTTP error code of 401 is always returned if API request was rejected
due to bad signatures, missing API Keys, or the user simply did not have
the permissions to execute the command.

Asynchronous Commands

Asynchronous commands were introduced in CloudStack 2.x. Commands are
designated as asynchronous when they can potentially take a long period
of time to complete such as creating a snapshot or disk volume. They
differ from synchronous commands by the following:

	They are identified in the API Reference by an (A).

	They will immediately return a job ID to refer to the job that will
be responsible in processing the command.

	If executed as a “create” resource command, it will return the
resource ID as well as the job ID.

You can periodically check the status of the job by making a simple
API call to the command, queryAsyncJobResult and passing in the job
ID.

Job Status

The key to using an asynchronous command is the job ID that is returned
immediately once the command has been executed. With the job ID, you can
periodically check the job status by making calls to queryAsyncJobResult
command. The command will return three possible job status integer
values:

	0 - Job is still in progress. Continue to periodically poll for any
status changes.

	1 - Job has successfully completed. The job will return any
successful response values associated with command that was
originally executed.

	2 - Job has failed to complete. Please check the “jobresultcode” tag
for failure reason code and “jobresult” for the failure reason.

Example

The following shows an example of using an asynchronous command. Assume
the API command:

command=deployVirtualMachine&zoneId=1&serviceOfferingId=1&diskOfferingId=1&templateId=1

CloudStack will immediately return a job ID and any other additional
data.

<deployvirtualmachineresponse>
 <jobid>1</jobid>
 <id>100</id>
</deployvirtualmachineresponse>

Using the job ID, you can periodically poll for the results by using the
queryAsyncJobResult command.

command=queryAsyncJobResult&jobId=1

Three possible results could come from this query.

Job is still pending:

<queryasyncjobresult>
 <jobid>1</jobid>
 <jobstatus>0</jobstatus>
 <jobprocstatus>1</jobprocstatus>
</queryasyncjobresult>

Job has succeeded:

<queryasyncjobresultresponse cloud-stack-version="3.0.1.6">
 <jobid>1</jobid>
 <jobstatus>1</jobstatus>
 <jobprocstatus>0</jobprocstatus>
 <jobresultcode>0</jobresultcode>
 <jobresulttype>object</jobresulttype>
 <jobresult>
 <virtualmachine>
 <id>450</id>
 <name>i-2-450-VM</name>
 <displayname>i-2-450-VM</displayname>
 <account>admin</account>
 <domainid>1</domainid>
 <domain>ROOT</domain>
 <created>2011-03-10T18:20:25-0800</created>
 <state>Running</state>
 <haenable>false</haenable>
 <zoneid>1</zoneid>
 <zonename>San Jose 1</zonename>
 <hostid>2</hostid>
 <hostname>905-13.sjc.lab.vmops.com</hostname>
 <templateid>1</templateid>
 <templatename>CentOS 5.3 64bit LAMP</templatename>
 <templatedisplaytext>CentOS 5.3 64bit LAMP</templatedisplaytext>
 <passwordenabled>false</passwordenabled>
 <serviceofferingid>1</serviceofferingid>
 <serviceofferingname>Small Instance</serviceofferingname>
 <cpunumber>1</cpunumber>
 <cpuspeed>500</cpuspeed>
 <memory>512</memory>
 <guestosid>12</guestosid>
 <rootdeviceid>0</rootdeviceid>
 <rootdevicetype>NetworkFilesystem</rootdevicetype>
 <nic>
 <id>561</id>
 <networkid>205</networkid>
 <netmask>255.255.255.0</netmask>
 <gateway>10.1.1.1</gateway>
 <ipaddress>10.1.1.225</ipaddress>
 <isolationuri>vlan://295</isolationuri>
 <broadcasturi>vlan://295</broadcasturi>
 <traffictype>Guest</traffictype>
 <type>Virtual</type>
 <isdefault>true</isdefault>
 </nic>
 <hypervisor>XenServer</hypervisor>
 </virtualmachine>
 </jobresult>
</queryasyncjobresultresponse>

Job has failed:

<queryasyncjobresult>
 <jobid>1</jobid>
 <jobstatus>2</jobstatus>
 <jobprocstatus>0</jobprocstatus>
 <jobresultcode>551</jobresultcode>
 <jobresulttype>text</jobresulttype>
 <jobresult>Unable to deploy virtual machine id = 100 due to not enough capacity</jobresult>
</queryasyncjobresult>

Event Types

	Types
	Events

	VM
	VM.CREATE

VM.DESTROY

VM.START

VM.STOP

VM.REBOOT

VM.UPDATE

VM.UPGRADE

VM.DYNAMIC.SCALE

VM.RESETPASSWORD

VM.RESETSSHKEY

VM.MIGRATE

VM.MOVE

VM.RESTORE

	Domain Router
	ROUTER.CREATE

ROUTER.DESTROY

ROUTER.START

ROUTER.STOP

ROUTER.REBOOT

ROUTER.HA

ROUTER.UPGRADE

	Console proxy
	PROXY.CREATE

PROXY.DESTROY

PROXY.START

PROXY.STOP

PROXY.REBOOT

PROXY.HA

	VNC Console
Events
	VNC.CONNECT

VNC.DISCONNECT

	Network Events
	NET.IPASSIGN

NET.IPRELEASE

PORTABLE.IPASSIGN

PORTABLE.IPRELEASE

NET.RULEADD

NET.RULEDELETE

NET.RULEMODIFY

NETWORK.CREATE

NETWORK.DELETE

NETWORK.UPDATE

FIREWALL.OPEN

FIREWALL.CLOSE

	NIC Events
	NIC.CREATE

NIC.DELETE

NIC.UPDATE

NIC.DETAIL.ADD

NIC.DETAIL.UPDATE

NIC.DETAIL.REMOVE

	Load Balancers
	LB.ASSIGN.TO.RULE

LB.REMOVE.FROM.RULE

LB.CREATE

LB.DELETE

LB.STICKINESSPOLICY.CREATE

LB.STICKINESSPOLICY.DELETE

LB.HEALTHCHECKPOLICY.CREATE

LB.HEALTHCHECKPOLICY.DELETE

LB.UPDATE

	Global Load
Balancer rules
	GLOBAL.LB.ASSIGN

GLOBAL.LB.REMOVE

GLOBAL.LB.CREATE

GLOBAL.LB.DELETE

GLOBAL.LB.UPDATE

	Account events
	ACCOUNT.ENABLE

ACCOUNT.DISABLE

ACCOUNT.CREATE

ACCOUNT.DELETE

ACCOUNT.UPDATE

ACCOUNT.MARK.DEFAULT.ZONE

	UserVO Events
	USER.LOGIN

USER.LOGOUT

USER.CREATE

USER.DELETE

USER.DISABLE

USER.UPDATE

USER.ENABLE

USER.LOCK

	Registering SSH
keypair events
	REGISTER.SSH.KEYPAIR

	Register for user
API and secret
keys
	REGISTER.USER.KEY

	Template Events
	TEMPLATE.CREATE

TEMPLATE.DELETE

TEMPLATE.UPDATE

TEMPLATE.DOWNLOAD.START

TEMPLATE.DOWNLOAD.SUCCESS

TEMPLATE.DOWNLOAD.FAILED

TEMPLATE.COPY

TEMPLATE.EXTRACT

TEMPLATE.UPLOAD

TEMPLATE.CLEANUP

	Volume Events
	VOLUME.CREATE

VOLUME.DELETE

VOLUME.ATTACH

VOLUME.DETACH

VOLUME.EXTRACT

VOLUME.UPLOAD

VOLUME.MIGRATE

VOLUME.RESIZE

VOLUME.DETAIL.UPDATE

VOLUME.DETAIL.ADD

VOLUME.DETAIL.REMOVE

	Domains
	DOMAIN.CREATE

DOMAIN.DELETE

DOMAIN.UPDATE

	Snapshots
	SNAPSHOT.CREATE

SNAPSHOT.DELETE

SNAPSHOTPOLICY.CREATE

SNAPSHOTPOLICY.UPDATE

SNAPSHOTPOLICY.DELETE

	ISO
	ISO.CREATE

ISO.DELETE

ISO.COPY

ISO.ATTACH

ISO.DETACH

ISO.EXTRACT

ISO.UPLOAD

	SSVM
	SSVM.CREATE

SSVM.DESTROY

SSVM.START

SSVM.STOP

SSVM.REBOOT

SSVM.HA

	Service Offerings
	SERVICE.OFFERING.CREATE

SERVICE.OFFERING.EDIT

SERVICE.OFFERING.DELETE

	Disk Offerings
	DISK.OFFERING.CREATE

DISK.OFFERING.EDIT

DISK.OFFERING.DELETE

	Network offerings
	NETWORK.OFFERING.CREATE

NETWORK.OFFERING.ASSIGN

NETWORK.OFFERING.EDIT

NETWORK.OFFERING.REMOVE

NETWORK.OFFERING.DELETE

	Pods
	POD.CREATE

POD.EDIT

POD.DELETE

	Zones
	ZONE.CREATE

ZONE.EDIT

ZONE.DELETE

	VLANs/IP ranges
	VLAN.IP.RANGE.CREATE

VLAN.IP.RANGE.DELETE

VLAN.IP.RANGE.DEDICATE

VLAN.IP.RANGE.RELEASE

STORAGE.IP.RANGE.CREATE

STORAGE.IP.RANGE.DELETE

STORAGE.IP.RANGE.UPDATE

	Configuration
Table
	CONFIGURATION.VALUE.EDIT

	Security Groups
	SG.AUTH.INGRESS

SG.REVOKE.INGRESS

SG.AUTH.EGRESS

SG.REVOKE.EGRESS

SG.CREATE

SG.DELETE

SG.ASSIGN

SG.REMOVE

	Host
	HOST.RECONNECT

	Maintenance
	MAINT.CANCEL

MAINT.CANCEL.PS

MAINT.PREPARE

MAINT.PREPARE.PS

	VPN
	VPN.REMOTE.ACCESS.CREATE

VPN.REMOTE.ACCESS.DESTROY

VPN.USER.ADD

VPN.USER.REMOVE

VPN.S2S.VPN.GATEWAY.CREATE

VPN.S2S.VPN.GATEWAY.DELETE

VPN.S2S.CUSTOMER.GATEWAY.CREATE

VPN.S2S.CUSTOMER.GATEWAY.DELETE

VPN.S2S.CUSTOMER.GATEWAY.UPDATE

VPN.S2S.CONNECTION.CREATE

VPN.S2S.CONNECTION.DELETE

VPN.S2S.CONNECTION.RESET

	Network
	NETWORK.RESTART

	Custom
certificates
	UPLOAD.CUSTOM.CERTIFICATE

	OneToOnenat
	STATICNAT.ENABLE

STATICNAT.DISABLE

ZONE.VLAN.ASSIGN

ZONE.VLAN.RELEASE

	Projects
	PROJECT.CREATE

PROJECT.UPDATE

PROJECT.DELETE

PROJECT.ACTIVATE

PROJECT.SUSPEND

PROJECT.ACCOUNT.ADD

PROJECT.INVITATION.UPDATE

PROJECT.INVITATION.REMOVE

PROJECT.ACCOUNT.REMOVE

	Network as a
Service
	NETWORK.ELEMENT.CONFIGURE

	Physical Network
Events
	PHYSICAL.NETWORK.CREATE

PHYSICAL.NETWORK.DELETE

PHYSICAL.NETWORK.UPDATE

	Physical Network
Service Provider
Events
	SERVICE.PROVIDER.CREATE

SERVICE.PROVIDER.DELETE

SERVICE.PROVIDER.UPDATE

	Physical Network
Traffic Type
Events
	TRAFFIC.TYPE.CREATE

TRAFFIC.TYPE.DELETE

TRAFFIC.TYPE.UPDATE

	External network
device events
	PHYSICAL.LOADBALANCER.ADD

PHYSICAL.LOADBALANCER.DELETE

PHYSICAL.LOADBALANCER.CONFIGURE

	External switch
management device
events

For example:
Cisco Nexus 1000v
Virtual
Supervisor
Module.

	SWITCH.MGMT.ADD

SWITCH.MGMT.DELETE

SWITCH.MGMT.CONFIGURE

SWITCH.MGMT.ENABLE

SWITCH.MGMT.DISABLE

PHYSICAL.FIREWALL.ADD

PHYSICAL.FIREWALL.DELETE

PHYSICAL.FIREWALL.CONFIGURE

	VPC
	VPC.CREATE

VPC.UPDATE

VPC.DELETE

VPC.RESTART

	Network ACL
	NETWORK.ACL.CREATE

NETWORK.ACL.DELETE

NETWORK.ACL.REPLACE

NETWORK.ACL.ITEM.CREATE

NETWORK.ACL.ITEM.UPDATE

NETWORK.ACL.ITEM.DELETE

	VPC offerings
	VPC.OFFERING.CREATE

VPC.OFFERING.UPDATE

VPC.OFFERING.DELETE

	Private gateway
	PRIVATE.GATEWAY.CREATE

PRIVATE.GATEWAY.DELETE

	Static routes
	STATIC.ROUTE.CREATE

STATIC.ROUTE.DELETE

	Tag-related
events
	CREATE_TAGS

DELETE_TAGS

	Meta data-related
events
	CREATE_RESOURCE_DETAILS

DELETE_RESOURCE_DETAILS

	VM snapshot
events
	VMSNAPSHOT.CREATE

VMSNAPSHOT.DELETE

VMSNAPSHOT.REVERTTO

	External network
device events
	PHYSICAL.NVPCONTROLLER.ADD

PHYSICAL.NVPCONTROLLER.DELETE

PHYSICAL.NVPCONTROLLER.CONFIGURE

	AutoScale
	COUNTER.CREATE

COUNTER.DELETE

CONDITION.CREATE

CONDITION.DELETE

AUTOSCALEPOLICY.CREATE

AUTOSCALEPOLICY.UPDATE

AUTOSCALEPOLICY.DELETE

AUTOSCALEVMPROFILE.CREATE

AUTOSCALEVMPROFILE.DELETE

AUTOSCALEVMPROFILE.UPDATE

AUTOSCALEVMGROUP.CREATE

AUTOSCALEVMGROUP.DELETE

AUTOSCALEVMGROUP.UPDATE

AUTOSCALEVMGROUP.ENABLE

AUTOSCALEVMGROUP.DISABLE

PHYSICAL.DHCP.ADD

PHYSICAL.DHCP.DELETE

PHYSICAL.PXE.ADD

PHYSICAL.PXE.DELETE

AG.CREATE

AG.DELETE

AG.ASSIGN

AG.REMOVE

VM.AG.UPDATE

INTERNALLBVM.START

INTERNALLBVM.STOP

HOST.RESERVATION.RELEASE

	Dedicated guest
vlan range
	GUESTVLANRANGE.DEDICATE

GUESTVLANRANGE.RELEASE

PORTABLE.IP.RANGE.CREATE

PORTABLE.IP.RANGE.DELETE

PORTABLE.IP.TRANSFER

	Dedicated
Resources
	DEDICATE.RESOURCE

DEDICATE.RESOURCE.RELEASE

VM.RESERVATION.CLEANUP

UCS.ASSOCIATEPROFILE

UCS.DISASSOCIATEPROFILE

Time Zones

The following time zone identifiers are accepted by PRODUCT. There are
several places that have a time zone as a required or optional
parameter. These include scheduling recurring snapshots, creating a
user, and specifying the usage time zone in the Configuration table.

	Etc/GMT+12
	Etc/GMT+11
	Pacific/Samoa

	Pacific/Honolulu
	US/Alaska
	America/Los_Angeles

	Mexico/BajaNorte
	US/Arizona
	US/Mountain

	America/Chihuahua
	America/Chicago
	America/Costa_Rica

	America/Mexico_City
	Canada/Saskatchewan
	America/Bogota

	America/New_York
	America/Caracas
	America/Asuncion

	America/Cuiaba
	America/Halifax
	America/La_Paz

	America/Santiago
	America/St_Johns
	America/Araguaina

	America/Argentina/Buenos_Aires
	America/Cayenne
	America/Godthab

	America/Montevideo
	Etc/GMT+2
	Atlantic/Azores

	Atlantic/Cape_Verde
	Africa/Casablanca
	Etc/UTC

	Atlantic/Reykjavik
	Europe/London
	CET

	Europe/Bucharest
	Africa/Johannesburg
	Asia/Beirut

	Africa/Cairo
	Asia/Jerusalem
	Europe/Minsk

	Europe/Moscow
	Africa/Nairobi
	Asia/Karachi

	Asia/Kolkata
	Asia/Bangkok
	Asia/Shanghai

	Asia/Kuala_Lumpur
	Australia/Perth
	Asia/Taipei

	Asia/Tokyo
	Asia/Seoul
	Australia/Adelaide

	Australia/Darwin
	Australia/Brisbane
	Australia/Canberra

	Pacific/Guam
	Pacific/Auckland
	

Plugins

Storage Plugins

This section gives an outline of how to implement a plugin to integrate
a third-party storage provider. For details and an example, you will
need to read the code.

Note

Example code is available at: plugins/storage/volume/sample

Third party storage providers can integrate with CloudStack to provide
either primary storage or secondary storage. For example, CloudStack
provides plugins for Amazon Simple Storage Service (S3) or OpenStack
Object Storage (Swift). The S3 plugin can be used for any object storage
that supports the Amazon S3 interface.

Additional third party object storages that do not support the S3
interface can be integrated with CloudStack by writing plugin software that
uses the object storage plugin framework. Several new interfaces are
available so that storage providers can develop vendor-specific plugins
based on well-defined contracts that can be seamlessly managed by
CloudStack.

Artifacts such as templates, ISOs and snapshots are kept in storage
which CloudStack refers to as secondary storage. To improve scalability and
performance, as when a number of hosts access secondary storage
concurrently, object storage can be used for secondary storage. Object
storage can also provide built-in high availability capability. When
using object storage, access to secondary storage data can be made
available across multiple zones in a region. This is a huge benefit, as
it is no longer necessary to copy templates, snapshots etc. across zones
as would be needed in an environment using only zone-based NFS storage.

The user enables a storage plugin through the UI. A new dialog box
choice is offered to select the storage provider. Depending on which
provider is selected, additional input fields may appear so that the
user can provide the additional details required by that provider, such
as a user name and password for a third-party storage account.

Overview of How to Write a Storage Plugin

To add a third-party storage option to CloudStack, follow these general
steps (explained in more detail later in this section):

	Implement the following interfaces in Java:
	DataStoreDriver

	DataStoreLifecycle

	DataStoreProvider

	VMSnapshotStrategy (if you want to customize the VM snapshot
functionality)

	Hardcode your plugin’s required additional input fields into the code
for the Add Secondary Storage or Add Primary Storage dialog box.

	Place your .jar file in plugins/storage/volume/ or plugins/storage/image/.

	Edit /client/tomcatconf/componentContext.xml.in.

	Edit client/pom.xml.

Implementing DataStoreDriver

DataStoreDriver contains the code that CloudStack will use to provision the
object store, when needed.

You must implement the following methods:

	getTO()

	getStoreTO()

	createAsync()

	deleteAsync()

The following methods are optional:

	resize()

	canCopy() is optional. If you set it to true, then you must implement
copyAsync().

Implementing DataStoreLifecycle

DataStoreLifecycle contains the code to manage the storage operations
for ongoing use of the storage. Several operations are needed, like
create, maintenance mode, delete, etc.

You must implement the following methods:

	initialize()

	maintain()

	cancelMaintain()

	deleteDataStore()

	Implement one of the attach*() methods depending on what scope you
want the storage to have: attachHost(), attachCluster(), or
attachZone().

Implementing DataStoreProvider

DataStoreProvider contains the main code of the data store.

You must implement the following methods:

	getDatastoreLifeCycle()

	getDataStoreDriver()

	getTypes(). Returns one or more types of storage for which this data
store provider can be used. For secondary object storage, return
IMAGE, and for a Secondary Staging Store, return ImageCache.

	configure(). First initialize the lifecycle implementation and the
driver implementation, then call registerDriver() to register the new
object store provider instance with CloudStack.

	getName(). Returns the unique name of your provider; for example,
this can be used to get the name to display in the UI.

The following methods are optional:

	getHostListener() is optional; it’s for monitoring the status of the
host.

Implementing VMSnapshotStrategy

VMSnapshotStrategy has the following methods:

	takeVMSnapshot()

	deleteVMSnapshot()

	revertVMSnapshot()

	canHandle(). For a given VM snapshot, tells whether this
implementation of VMSnapshotStrategy can handle it.

Place the .jar File in the Right Directory

For a secondary storage plugin, place your .jar file here:

plugins/storage/image/

For a primary storage plugin, place your .jar file here:

plugins/storage/volume/

Edit Configuration Files

First, edit the following file tell CloudStack to include your .jar file.
Add a line to this file to tell the CloudStack Management Server that it
now has a dependency on your code:

client/pom.xml

Place some facts about your code in the following file so CloudStack can
run it:

/client/tomcatconf/componentContext.xml.in

In the section “Deployment configurations of various adapters,” add
this:

<bean>id=”some unique ID” class=”package name of your implementation of DataStoreProvider”</bean>

In the section “Storage Providers,” add this:

<property name=”providers”>
 <ref local=”same ID from the bean tag's id attribute”>
</property>

Minimum Required Interfaces

The classes, interfaces, and methods used by CloudStack from the Amazon Web
Services (AWS) Java SDK are listed in this section. An object storage
that supports the S3 interface is minimally required to support the
below in order to be compatible with CloudStack.

Interface AmazonS3

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/s3/AmazonS3.html

	Modifier and
Type
	Method and Description

	Bucket
	createBucket(String

 Allocators

Allocators

CloudStack enables administrators to write custom allocators that will
choose the Host to place a new guest and the storage host from which to
allocate guest virtual disk images.

These are following categories of allocators currently supported:

	HostAllocators - Allows you to create custom rules to determine which
physical host to allocate the guest virtual machines on.

	StoragePoolAllocators - Allows you to create custom rules to
determine which storage pool to allocate the guest virtual machines
on.

Implementing a custom HostAllocator

HostAllocators are written by extending
com.cloud.agent.manager.allocator.HostAllocator interface.

HostAllocator Interface

The interface defines the following two methods.

/**
 * Checks if the VM can be upgraded to the specified ServiceOffering
 * @param UserVm vm
 * @param ServiceOffering offering
 * @return boolean true if the VM can be upgraded
**/

publicboolean isVirtualMachineUpgradable(final UserVm vm, final ServiceOffering offering);

/**
 * Determines which physical hosts are suitable to allocate the guest virtual machines on
 *
 * @paramVirtualMachineProfile vmProfile
 * @paramDeploymentPlan plan
 * @paramType type
 * @paramExcludeList avoid
 * @paramint returnUpTo
 * @returnList<Host>List of hosts that are suitable for VM allocation
**/

publicList<Host> allocateTo(VirtualMachineProfile<?extendsVirtualMachine> vmProfile, DeploymentPlan plan, Type type, ExcludeList avoid, intreturnUpTo);

A custom HostAllocator can be written by implementing the ‘allocateTo’
method

Input Parameters for the method ‘HostAllocator :: allocateTo’

com.cloud.vm.VirtualMachineProfile vmProfile

VirtualMachineProfile describes one virtual machine. This allows the
adapters like Allocators to process the information in the virtual
machine and make determinations on what the virtual machine profile
should look like before it is actually started on the hypervisor.

HostAllocators can make use of the following information present in the
VirtualMachineProfile:

	The ServiceOffering that specifies configuration like requested CPU
speed, RAM etc necessary for the guest VM.

	The VirtualMachineTemplate, the template to be used to start the VM.

com.cloud.deploy.DeploymentPlan plan

DeploymentPlan should specify:

	dataCenterId: The data center the VM should deploy in

	podId: The pod the Vm should deploy in; null if no preference

	clusterId: The cluster the VM should deploy in; null if no preference

	poolId: The storage pool the VM should be created in; null if no
preference

com.cloud.host.Host.Type type

Type of the Host needed for this guest VM. Currently
com.cloud.host.Host.Type interface defines the following Host types:

	Storage

	Routing

	SecondaryStorage

	ConsoleProxy

	ExternalFirewall

	ExternalLoadBalancer

com.cloud.deploy.DeploymentPlanner.ExcludeList avoid

The ExcludeList specifies what datacenters, pods, clusters, hosts,
storagePools should not be considered for allocating this guest VM.
HostAllocators should avoid the hosts that are mentioned in
ExcludeList.hostIds.

	Set Long dcIds;

	Set Long podIds;

	Set Long clusterIds;

	Set Long hostIds;

	Set Long poolIds;

int returnUpTo

This specifies return up to that many available hosts for this guest VM.

To get all possible hosts, set this value to -1.

Reference HostAllocator implementation

Refer com.cloud.agent.manager.allocator.impl.FirstFitAllocator that
implements the HostAllocator interface. This allocator checks available
hosts in the specified datacenter, Pod, Cluster and considering the
given ServiceOffering requirements.

If returnUpTo = 1, this allocator would return the first Host that fits
the requirements of the guest VM.

Loading a custom HostAllocator

	Write a custom HostAllocator class, implementing the interface
described above.

	Package the code into a JAR file and make the JAR available in the
classpath of the Management Server/tomcat.

	Modify the components.xml and components-premium.xml files found in
/client/ tomcatconf as follows.

	Search for ‘HostAllocator’ in these files.

<adapters key="com.cloud.agent.manager.allocator.HostAllocator">
 <adapter name="FirstFit" class="com.cloud.agent.manager.allocator.impl.FirstFitAllocator"/>
</adapters>

	Replace the FirstFitAllocator with your class name. Optionally, you
can change the name of the adapter as well.

	Restart the Management Server.

Implementing a custom StoragePoolAllocator

StoragePoolAllocators are written by extending
com.cloud.storage.allocator. StoragePoolAllocator interface.

StoragePoolAllocator Interface

A custom StoragePoolAllocator can be written by implementing the
‘allocateTo’ method.

/**
 * Determines which storage pools are suitable for the guest virtual machine
 * @param DiskProfile dskCh
 * @param VirtualMachineProfile vmProfile
 * @param DeploymentPlan plan
 * @param ExcludeList avoid
 * @param int returnUpTo
 * @return List<StoragePool> List of storage pools that are suitable for the VM
**/

public List<StoragePool> allocateToPool(DiskProfile dskCh, VirtualMachineProfile<? extends VirtualMachine> vm, DeploymentPlan plan, ExcludeList avoid, int returnUpTo);

This interface also contains some other methods to support some legacy
code. However your custom allocator can extend the existing
com.cloud.storage.allocator. AbstractStoragePoolAllocator. This class
provides default implementation for all the other interface methods.

Input Parameters for the method ‘StoragePoolAllocator :: allocateTo’

com.cloud.vm.DiskProfile dskCh

DiskCharacteristics describes a disk and what functionality is required
from it. It specifies the storage pool tags if any to be used while
searching for a storage pool.

com.cloud.vm.VirtualMachineProfile vmProfile

VirtualMachineProfile describes one virtual machine. This allows the
adapters like Allocators to process the information in the virtual
machine and make determinations on what the virtual machine profile
should look like before it is actually started on the hypervisor.

StoragePoolAllocators can make use of the following information present
in the VirtualMachineProfile:

	The VirtualMachine instance that specifies properties of the guest
VM.

	The VirtualMachineTemplate, the template to be used to start the VM.

com.cloud.deploy.DeploymentPlan plan

DeploymentPlan should specify:

	dataCenterId: The data center the VM should deploy in

	podId: The pod the VM should deploy in; null if no preference

	clusterId: The cluster the VM should deploy in; null if no preference

	poolId: The storage pool the VM should be created in; null if no
preference

com.cloud.deploy.DeploymentPlanner.ExcludeList avoid

The ExcludeList specifies what datacenters, pods, clusters, hosts,
storagePools should not be considered for allocating this guest VM.
StoragePoolAllocators should avoid the pools that are mentioned in
ExcludeList.poolIds

	Set Long dcIds;

	Set Long podIds;

	Set Long clusterIds;

	Set Long hostIds;

	Set Long poolIds;

int returnUpTo

This specifies return up to that many available pools for this guest VM

To get all possible pools, set this value to -1

Reference StoragePoolAllocator implementation

Refer com.cloud.storage.allocator.FirstFitStoragePoolAllocator that
implements the StoragePoolAllocator interface. This allocator checks
available pools in the specified datacenter, Pod, Cluster and
considering the given DiskProfile characteristics.

If returnUpTo = 1, this allocator would return the first Storage Pool
that fits the requirements of the guest VM.

Loading a custom StoragePoolAllocator

	Write a custom StoragePoolAllocator class, implementing the interface
described above.

	Package the code into a JAR file and make the JAR available in the
classpath of the Management Server/tomcat.

	Modify the components.xml and components-premium.xml files found in
/client/ tomcatconf as follows.

	Search for ‘StoragePoolAllocator’ in these files.

<adapters key="com.cloud.storage.allocator.StoragePoolAllocator">
 <adapter name="Storage" class="com.cloud.storage.allocator.FirstFitStoragePoolAllocator"/>
</adapters>

	Replace the FirstFitStoragePoolAllocator with your class name.
Optionally, you can change the name of the adapter as well.

	Restart the Management Server.

 Deploying CloudStack with Ansible

Deploying CloudStack with Ansible

In this article, Paul Angus [https://twitter.com/CloudyAngus] Cloud
Architect at ShapeBlue takes a look at using Ansible to Deploy an
Apache

 Index

Index

 Apache CloudStack Administration Guide

Apache CloudStack Administration Guide

Backups

Monitoring

SNMP

CloudStack will send alerts for a number of

Syslog

AMQP

JMX

API Queries

Usage

Tuning

Configuration Parameters

System Reliability and Availability

HA for Management Server

The CloudStack Management Server should be deployed in a multi-node configuration such that it is not susceptible to individual server failures. The Management Server itself (as distinct from the MySQL database) is stateless and may be placed behind a load balancer.

Normal operation of Hosts is not impacted by an outage of all Management Serves. All guest VMs will continue to work.

When the Management Server is down, no new VMs can be created, and the end user and admin UI, API, dynamic load distribution, and HA will cease to work.

Management Server Load Balancing

CloudStack can use a load balancer to provide a virtual IP for multiple Management Servers. The administrator is responsible for creating the load balancer rules for the Management Servers. The application requires persistence or stickiness across multiple sessions. The following chart lists the ports that should be load balanced and whether or not persistence is required.

	Source port
	Destination port
	Protocol
	Persistence Required?

	80 or 443
	8080 (or 20400 with AJP)
	HTTP (or AJP)
	Yes

	8250
	8250
	TCP
	Yes

In addition to above settings, the administrator is responsible for setting the ‘host’ global config value from the management server IP to load balancer virtual IP address. If the ‘host’ value is not set to the VIP for Port 8250 and one of your management servers crashes, the UI is still available but the system VMs will not be able to contact the management server.

Limiting the Rate of API Requests

You can limit the rate at which API requests can be placed for each account. This is useful to avoid malicious attacks on the Management Server, prevent performance degradation, and provide fairness to all accounts.

If the number of API calls exceeds the threshold, an error message is returned for any additional API calls. The caller will have to retry these API calls at another time.

Configuring the API Request Rate

To control the API request rate, use the following global configuration settings:

	api.throttling.enabled - Enable/Disable API throttling. By default, this setting is false, so API throttling is not enabled.

	api.throttling.interval (in seconds) - Time interval during which the number of API requests is to be counted. When the interval has passed, the API count is reset to 0.

	api.throttling.max - Maximum number of APIs that can be placed within the api.throttling.interval period.

	api.throttling.cachesize - Cache size for storing API counters. Use a value higher than the total number of accounts managed by the cloud. One cache entry is needed for each account, to store the running API total for that account.

Limitations on API Throttling

The following limitations exist in the current implementation of this feature:

	In a deployment with multiple Management Servers, the cache is not synchronized across them. In this case, CloudStack might not be able to ensure that only the exact desired number of API requests are allowed. In the worst case, the number of API calls that might be allowed is (number of Management Servers) * (api.throttling.max).

	The API commands resetApiLimit and getApiLimit are limited to the Management Server where the API is invoked.

HA-Enabled Virtual Machines

The user can specify a virtual machine as HA-enabled. By default, all virtual router VMs and Elastic Load Balancing VMs are automatically configured as HA-enabled. When an HA-enabled VM crashes, CloudStack detects the crash and restarts the VM automatically within the same Availability Zone. HA is never performed across different Availability Zones. CloudStack has a conservative policy towards restarting VMs and ensures that there will never be two instances of the same VM running at the same time. The Management Server attempts to start the VM on another Host in the same cluster.

VM HA is not supported when the VM is using local storage.

Dedicated HA Hosts

One or more hosts can be designated for use only by HA-enabled VMs that are restarting due to a host failure. Setting up a pool of such dedicated HA hosts as the recovery destination for all HA-enabled VMs is useful to:

	Make it easier to determine which VMs have been restarted as part of the CloudStack high-availability function. If a VM is running on a dedicated HA host, then it must be an HA-enabled VM whose original host failed. (With one exception: It is possible for an administrator to manually migrate any VM to a dedicated HA host.).

	Keep HA-enabled VMs from restarting on hosts which may be reserved for other purposes.

The dedicated HA option is set through a special host tag when the host is created. To allow the administrator to dedicate hosts to only HA-enabled VMs, set the global configuration variable ha.tag to the desired tag (for example, “ha_host”), and restart the Management Server. Enter the value in the Host Tags field when adding the host(s) that you want to dedicate to HA-enabled VMs.

Primary Storage Outage and Data Loss

When a primary storage outage occurs the hypervisor immediately stops all VMs stored on that storage device. Guests that are marked for HA will be restarted as soon as practical when the primary storage comes back on line. With NFS, the hypervisor may allow the virtual machines to continue running depending on the nature of the issue. For example, an NFS hang will cause the guest VMs to be suspended until storage connectivity is restored.Primary storage is not designed to be backed up. Individual volumes in primary storage can be backed up using snapshots.

Secondary Storage Outage and Data Loss

For a Zone that has only one secondary storage server, a secondary storage outage will have feature level impact to the system but will not impact running guest VMs. It may become impossible to create a VM with the selected template for a user. A user may also not be able to save snapshots or examine/restore saved snapshots. These features will automatically be available when the secondary storage comes back online.

Secondary storage data loss will impact recently added user data including templates, snapshots, and ISO images. Secondary storage should be backed up periodically. Multiple secondary storage servers can be provisioned within each zone to increase the scalability of the system.

Managing System VMs

CloudStack uses several types of system virtual machines to perform tasks in the cloud. In general CloudStack manages these system VMs and creates, starts, and stops them as needed based on scale and immediate needs. However, the administrator should be aware of them and their roles to assist in debugging issues.

You can configure the system.vm.random.password parameter to create a random system VM password to ensure higher security. If you reset the value for system.vm.random.password to true and restart the Management Server, a random password is generated and stored encrypted in the database. You can view the decrypted password under the system.vm.password global parameter on the CloudStack UI or by calling the listConfigurations API.

The System VM Template

The System VMs come from a single template. The System VM has the following characteristics:

	Debian 6.0 (“Squeeze”), 2.6.32 kernel with the latest security patches from the Debian security APT repository

	Has a minimal set of packages installed thereby reducing the attack surface

	32-bit for enhanced performance on Xen/VMWare

	pvops kernel with Xen PV drivers, KVM virtio drivers, and VMware tools for optimum performance on all hypervisors

	Xen tools inclusion allows performance monitoring

	Latest versions of HAProxy, iptables, IPsec, and Apache from debian repository ensures improved security and speed

	Latest version of JRE from Sun/Oracle ensures improved security and speed

Accessing System VMs

It may sometimes be necessary to access System VMs for diagnostics of certain issues, for example if you are experiencing SSVM (Secondary Storage VM) connection issues. Use the steps below in order to connect to the SSH console of a running System VM.

Accessing System VMs over the network requires the use of private keys and connecting to System VMs SSH Daemon on port 3922. XenServer/KVM Hypervisors store this key at /root/.ssh/id_rsa.cloud on each CloudStack agent. To access System VMs running on ESXi, the key is stored on the management server at /var/lib/cloudstack/management/.ssh/id_rsa.

	Find the details of the System VM
#. Log in with admin privileges to the CloudStack UI.
#. Click Infrastructure, then System VMs, and then click the name of a running VM.
#. Take a note of the ‘Host’, ‘Private IP Address’ and ‘Link Local IP Address’ of the System VM you wish to access.

	XenServer/KVM Hypervisors
#. Connect to the Host of which the System VM is running.
#. SSH to the ‘Link Local IP Address’ of the System VM from the Host on which the VM is running.

Format: ssh -i <path-to-private-key> <link-local-ip> -p 3922
Example: root@faith:~# ssh -i /root/.ssh/id_rsa.cloud 169.254.3.93 -p 3922

	ESXi Hypervisors
#. Connect to your CloudStack Management Server.
#. ESXi users should SSH to the private IP address of the System VM.

Format: ssh -i <path-to-private-key> <vm-private-ip> -p 3922
Example: root@management:~# ssh -i /var/lib/cloudstack/management/.ssh/id_rsa 172.16.0.250 -p 3922

Multiple System VM Support for VMware

Every CloudStack zone has single System VM for template processing tasks such as downloading templates, uploading templates, and uploading ISOs. In a zone where VMware is being used, additional System VMs can be launched to process VMware-specific tasks such as taking snapshots and creating private templates. The CloudStack management server launches additional System VMs for VMware-specific tasks as the load increases. The management server monitors and weights all commands sent to these System VMs and performs dynamic load balancing and scaling-up of more System VMs.

Console Proxy

The Console Proxy is a type of System Virtual Machine that has a role in presenting a console view via the web UI. It connects the user’s browser to the VNC port made available via the hypervisor for the console of the guest. Both the administrator and end user web UIs offer a console connection.

Clicking a console icon brings up a new window. The AJAX code downloaded into that window refers to the public IP address of a console proxy VM. There is exactly one public IP address allocated per console proxy VM. The AJAX application connects to this IP. The console proxy then proxies the connection to the VNC port for the requested VM on the Host hosting the guest.

The console proxy VM will periodically report its active session count to the Management Server. The default reporting interval is five seconds. This can be changed through standard Management Server configuration with the parameter consoleproxy.loadscan.interval.

Assignment of guest VM to console proxy is determined by first determining if the guest VM has a previous session associated with a console proxy. If it does, the Management Server will assign the guest VM to the target Console Proxy VM regardless of the load on the proxy VM. Failing that, the first available running Console Proxy VM that has the capacity to handle new sessions is used.

Console proxies can be restarted by administrators but this will interrupt existing console sessions for users.

Using a SSL Certificate for the Console Proxy

The console viewing functionality uses a dynamic DNS service under the domain name realhostip.com to assist in providing SSL security to console sessions. The console proxy is assigned a public IP address. In order to avoid browser warnings for mismatched SSL certificates, the URL for the new console window is set to the form of https://aaa-bbb-ccc-ddd.realhostip.com. You will see this URL during console session creation. CloudStack includes the realhostip.com SSL certificate in the console proxy VM. Of course, CloudStack cannot know about the DNS A records for our customers’ public IPs prior to shipping the software. CloudStack therefore runs a dynamic DNS server that is authoritative for the realhostip.com domain. It maps the aaa-bbb-ccc-ddd part of the DNS name to the IP address aaa.bbb.ccc.ddd on lookups. This allows the browser to correctly connect to the console proxy’s public IP, where it then expects and receives a SSL certificate for realhostip.com, and SSL is set up without browser warnings.

Changing the Console Proxy SSL Certificate and Domain

If the administrator prefers, it is possible for the URL of the customer’s console session to show a domain other than realhostip.com. The administrator can customize the displayed domain by selecting a different domain and uploading a new SSL certificate and private key. The domain must run a DNS service that is capable of resolving queries for addresses of the form aaa-bbb-ccc-ddd.your.domain to an IPv4 IP address in the form aaa.bbb.ccc.ddd, for example, 202.8.44.1. To change the console proxy domain, SSL certificate, and private key:

	Set up dynamic name resolution or populate all possible DNS names in your public IP range into your existing DNS server with the format aaa-bbb-ccc-ddd.company.com -> aaa.bbb.ccc.ddd.

	Generate the private key and certificate signing request (CSR). When you are using openssl to generate private/public key pairs and CSRs, for the private key that you are going to paste into the CloudStack UI, be sure to convert it into PKCS#8 format.

	Generate a new 2048-bit private key:

openssl genrsa -des3 -out yourprivate.key 2048

	Generate a new certificate CSR:

openssl req -new -key yourprivate.key -out yourcertificate.csr

	Head to the website of your favorite trusted Certificate Authority, purchase an SSL certificate, and submit the CSR. You should receive a valid certificate in return

	Convert your private key format into PKCS#8 encrypted format.:

openssl pkcs8 -topk8 -in yourprivate.key -out yourprivate.pkcs8.encrypted.key

	Convert your PKCS#8 encrypted private key into the PKCS#8 format that is compliant with CloudStack:

openssl pkcs8 -in yourprivate.pkcs8.encrypted.key -out yourprivate.pkcs8.key

	In the Update SSL Certificate screen of the CloudStack UI, paste the following:
*. The certificate you’ve just generated.
*. The private key you’ve just generated.
*. The desired new domain name; for example, company.com

4. The desired new domain name; for example, company.com
This stops all currently running console proxy VMs, then restarts them with the new certificate and key. Users might notice a brief interruption in console availability.

The Management Server generates URLs of the form “aaa-bbb-ccc-ddd.company.com” after this change is made. The new console requests will be served with the new DNS domain name, certificate, and key.

Virtual Router

The virtual router is a type of System Virtual Machine. The virtual router is one of the most frequently used service providers in CloudStack. The end user has no direct access to the virtual router. Users can ping the virtual router and take actions that affect it (such as setting up port forwarding), but users do not have SSH access into the virtual router.

Virtual routers can be restarted by administrators, but this will interrupt public network access and other services for end users. A basic test in debugging networking issues is to attempt to ping the virtual router from a guest VM. Some of the characteristics of the virtual router are determined by its associated system service offering..

Configuring the Virtual Router

You can set the following:
*. IP range
*. Supported network services
*. Default domain name for the network serviced by the virtual router
*. Gateway IP address
*. How often CloudStack fetches network usage statistics from CloudStack virtual routers. If you want to collect traffic metering data from the virtual router, set the global configuration parameter router.stats.interval. If you are not using the virtual router to gather network usage statistics, set it to 0.

Upgrading a Virtual Router with System Service Offerings

When CloudStack creates a virtual router, it uses default settings which are defined in a default system service offering. See Section 8.2, “System Service Offerings”. All the virtual routers in a single guest network use the same system service offering. You can upgrade the capabilities of the virtual router by creating and applying a custom system service offering.
Define your custom system service offering.
Associate the system service offering with a network offering.
Apply the network offering to the network where you want the virtual routers to use the new system service offering.

Best Practices for Virtual Routers

	Restarting a virtual router from a hypervisor console deletes all the iptables rules. To work around this issue, stop the virtual router and start it from the CloudStack UI.

	Do not use the destroyRouter API when only one router is available in the network, because restartNetwork API with the cleanup=false parameter can’t recreate it later. If you want to destroy and recreate the single router available in the network, use the restartNetwork API with the cleanup=true parameter.

Secondary Storage VM

In addition to the hosts, CloudStack’s Secondary Storage VM mounts and writes to secondary storage.
Submissions to secondary storage go through the Secondary Storage VM. The Secondary Storage VM can retrieve templates and ISO images from URLs using a variety of protocols.
The secondary storage VM provides a background task that takes care of a variety of secondary storage activities: downloading a new template to a Zone, copying templates between Zones, and snapshot backups.
The administrator can log in to the secondary storage VM if needed.

Storage Administration

Hypervisor Host Management

Maintenance mode

Maintenance mode makes a host unavailable to have new virtual machines allocated to it. It also starts a process by which running virtual machines are live migrated to other available hosts within the same cluster. It should be noted that the live migration is not universally perfect, and you may end up with recalcitrant virtual machines which are unable to be live migrated. This can be due to lack of hypervisor-specific tooling or other problems.

vCenter and Maintenance mode

To enter maintenance mode on a vCenter host, both vCenter and CloudStack must be used in concert. CloudStack and vCenter have separate maintenance modes that work closely together.

	Place the host into CloudStack’s “scheduled maintenance” mode. This does not invoke the vCenter maintenance mode, but only causes VMs to be migrated off the host When the CloudStack maintenance mode is requested, the host first moves into the Prepare for Maintenance state. In this state it cannot be the target of new guest VM starts. Then all VMs will be migrated off the server. Live migration will be used to move VMs off the host. This allows the guests to be migrated to other hosts with no disruption to the guests. After this migration is completed, the host will enter the Ready for Maintenance mode.

	Wait for the “Ready for Maintenance” indicator to appear in the UI.

	Now use vCenter to perform whatever actions are necessary to maintain the host. During this time, the host cannot be the target of new VM allocations.

	When the maintenance tasks are complete, take the host out of maintenance mode as follows:
a. First use vCenter to exit the vCenter maintenance mode. This makes the host ready for CloudStack to reactivate it.
b. Then use CloudStack’s administrator UI to cancel the CloudStack maintenance mode When the host comes back online, the VMs that were migrated off of it may be migrated back to it manually and new VMs can be added.

XenServer Maintenance Mode

XenServer, you can take a server offline temporarily by using the Maintenance Mode feature in XenCenter. When you place a server into Maintenance Mode, all running VMs are automatically migrated from it to another host in the same pool. If the server is the pool master, a new master will also be selected for the pool. While a server is Maintenance Mode, you cannot create or start any VMs on it.

To place a XenServer host in Maintenace Mode

	In the Resources pane, select the server, then do one of the following:
*. Right-click, then click Enter Maintenance Mode on the shortcut menu.
*. On the Server menu, click Enter Maintenance Mode.

	Click Enter Maintenance Mode.

The server’s status in the Resources pane shows when all running VMs have been successfully migrated off the server.

To take a Xenserver host out of Maintenance mode

	In the Resources pane, select the server, then do one of the following:
*Right-click, then click Exit Maintenance Mode on the shortcut menu.
*On the Server menu, click Exit Maintenance Mode.

	Click Exit Maintenance Mode.

Disabling and enabling Zones, Pods, and Clusters

You can enable or disable a zone, pod, or cluster without permanently removing it from the cloud. This is useful for maintenance or when there are problems that make a portion of the cloud infrastructure unreliable. No new allocations will be made to a disabled zone, pod, or cluster until its state is returned to Enabled. When a zone, pod, or cluster is first added to the cloud, it is Disabled by default.
To disable and enable a zone, pod, or cluster:

	Log in to the CloudStack UI as administrator

	In the left navigation bar, click Infrastructure.

	In Zones, click View More.

	If you are disabling or enabling a zone, find the name of the zone in the list, and click the Enable/Disable button.

	If you are disabling or enabling a pod or cluster, click the name of the zone that contains the pod or cluster.

	Click the Compute tab.

	In the Pods or Clusters node of the diagram, click View All.

	Click the pod or cluster name in the list.

	Click the Enable/Disable button.

Removing hypervisor hosts

Hosts can be removed from the cloud as needed. The procedure to remove a host depends on the hypervisor type.

Removing XenServer and KVM Hosts

A node cannot be removed from a cluster until it has been placed in maintenance mode. This will ensure that all of the VMs on it have been migrated to other Hosts. To remove a Host from CloudStack:

	Place the node in maintenance mode.

	For KVM, stop the cloud-agent service.

	Use the UI option to remove the node.

	Then you may power down the Host, re-use its IP address, re-install it, etc

Removing vSphere Hosts

To remove this type of host, first place it in maintenance mode, as described above. Then use CloudStack to remove the host. CloudStack will not direct commands to a host that has been removed using CloudStack. However, the host may still exist in the vCenter cluster.

Changing hypervisor host password

The password for a XenServer Node, KVM Node, or vSphere Node may be changed in the database. Note that all Nodes in a Cluster must have the same password.
To change a hosts password:

	Identify all hosts in the cluster.

	Change the password on all hosts in the cluster. Now the password for the host and the password known to CloudStack will not match. Operations on the cluster will fail until the two passwords match.

	Get the list of host IDs for the host in the cluster where you are changing the password. You will need to access the database to determine these host IDs. For each hostname “h” (or vSphere cluster) that you are changing the password for, execute:

mysql> select id from cloud.host where name like ‘%h%’;

	Update the passwords for the host in the database. In this example, we change the passwords for hosts with IDs 5, 10, and 12 to “password”.:

mysql> update cloud.host set password=’password’ where id=5 or id=10 or id=12;

Overprovisioning and Service Offering Limits

CPU and memory (RAM) over-provisioning factors can be set for each cluster to change the number of VMs that can run on each host in the cluster. This helps optimize the use of resources. By increasing the over-provisioning ratio, more resource capacity will be used. If the ratio is set to 1, no over-provisioning is done.

The administrator can also set global default over-provisioning ratios in the cpu.overprovisioning.factor and mem.overprovisioning.factor global configuration variables. The default value of these variables is 1: over-provisioning is turned off by default.
Over-provisioning ratios are dynamically substituted in CloudStack’s capacity calculations. For example::

Capacity = 2 GB
Over-provisioning factor = 2
Capacity after over-provisioning = 4 GB
With this configuration, suppose you deploy 3 VMs of 1 GB each:
Used = 3 GB
Free = 1 GB

The administrator can specify a memory over-provisioning ratio, and can specify both CPU and memory over-provisioning ratios on a per-cluster basis.
In any given cloud, the optimum number of VMs for each host is affected by such things as the hypervisor, storage, and hardware configuration. These may be different for each cluster in the same cloud. A single global over-provisioning setting can not provide the best utilization for all the different clusters in the cloud. It has to be set for the lowest common denominator. The per-cluster setting provides a finer granularity for better utilization of resources, no matter where the CloudStack placement algorithm decides to place a VM.

The overprovisioning settings can be used along with dedicated resources (assigning a specific cluster to an account) to effectively offer different levels of service to different accounts. For example, an account paying for a more expensive level of service could be assigned to a dedicated cluster with an over-provisioning ratio of 1, and a lower-paying account to a cluster with a ratio of 2.

When a new host is added to a cluster, CloudStack will assume the host has the capability to perform the CPU and RAM over-provisioning which is configured for that cluster. It is up to the administrator to be sure the host is actually suitable for the level of over-provisioning which has been set.

Limitations on over-provisioning in KVM and XenServer

In XenServer, due to a constraint of this hypervisor, you can not use an over-provisioning factor greater than 4.

KVM can not manage memory allocation to VMs dynamically. CloudStack sets the minimum and maximum amount of memory that a VM can use. The hypervisor adjusts the memory within the set limits based on the memory contention.

Requirements for Over-Provisioning

Several prerequisites are required in order for over-provisioning to function properly. The feature is dependent on the OS type, hypervisor capabilities, and certain scripts. It is the administrator’s responsibility to ensure that these requirements are met.

Balloon Driver

All VMs should have a balloon driver installed in them. The hypervisor communicates with the balloon driver to free up and make the memory available to a VM.

XenServer

The balloon driver can be found as a part of xen pv or PVHVM drivers. The xen pvhvm drivers are included in upstream linux kernels 2.6.36+.

VMware

The balloon driver can be found as a part of the VMware tools. All the VMs that are deployed in a over-provisioned cluster should have the VMware tools installed.

KVM

All VMs are required to support the virtio drivers. These drivers are installed in all Linux kernel versions 2.6.25 and greater. The administrator must set CONFIG_VIRTIO_BALLOON=y in the virtio configuration.

Hypervisor capabilities

The hypervisor must be capable of using the memory ballooning.

XenServer

The DMC (Dynamic Memory Control) capability of the hypervisor should be enabled. Only XenServer Advanced and above versions have this feature.

VMware, KVM

Memory ballooning is supported by default.

Setting Over-Provisioning Rations

There are two ways the root admin can set CPU and RAM over-provisioning ratios. First, the global configuration settings cpu.overprovisioning.factor and mem.overprovisioning.factor will be applied when a new cluster is created. Later, the ratios can be modified for an existing cluster.

Only VMs deployed after the change are affected by the new setting. If you want VMs deployed before the change to adopt the new over-provisioning ratio, you must stop and restart the VMs. When this is done, CloudStack recalculates or scales the used and reserved capacities based on the new over-provisioning ratios, to ensure that CloudStack is correctly tracking the amount of free capacity.

To change the over-provisioning ratios for an existing cluster:

	Log in as administrator to the CloudStack UI.

	In the left navigation bar, click Infrastructure.

	Under Clusters, click View All.

	Select the cluster you want to work with, and click the Edit button.

	Fill in your desired over-provisioning multipliers in the fields CPU overcommit ratio and RAM overcommit ratio. The value which is intially shown in these fields is the default value inherited from the global configuration settings.

Service Offering Limits and Over-Provisioning

Service offering limits (e.g. 1 GHz, 1 core) are strictly enforced for core count. For example, a guest with a service offering of one core will have only one core available to it regardless of other activity on the Host.

Service offering limits for gigahertz are enforced only in the presence of contention for CPU resources. For example, suppose that a guest was created with a service offering of 1 GHz on a Host that has 2 GHz cores, and that guest is the only guest running on the Host. The guest will have the full 2 GHz available to it. When multiple guests are attempting to use the CPU a weighting factor is used to schedule CPU resources. The weight is based on the clock speed in the service offering. Guests receive a CPU allocation that is proportionate to the GHz in the service offering. For example, a guest created from a 2 GHz service offering will receive twice the CPU allocation as a guest created from a 1 GHz service offering. CloudStack does not perform memory over-provisioning.

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

_static/down.png

_static/images/cluster-overview.png
Cluster

Primary
Storage

A simple cluster

_static/images/plugin4.jpg
wE & E

Projects

Global Settings

Configuration

Plugins

_static/images/acslogo.png
apachecloudstack’

open source cloud computing

_static/images/nvp-network-offering.png
@ Add network offering

aNVPL2SNAT

[NVP Isolated Network with SNAT

ify VLAN
VPC:
Supported S

Port Forwarding;

Redundant router
pabilty:

Supported Source
PPOAT Y

[MCCD Guest

Cancel |

_images/cluster-overview.png
Cluster

Primary
Storage

A simple cluster

_images/pod-overview1.png
Pod

Cluster

Asimple pod

_static/images/region-overview.png
Region

Zone

Pod

Cluster

Zone

Zone

A region with multiple zones

_images/acslogo.png
apachecloudstack’

open source cloud computing

_static/images/nvp-add-controller.png
@ Add Nvp Controller

Number of Retrie:

Transport Zone
Uuid

L3 Gateway Sen
U

uid:

Cancel |

_images/plugin4.jpg
wE & E

Projects

Global Settings

Configuration

Plugins

_images/basic-deployment1.png
Management

Server

Machine 1

Hypervisor

Machine 2

Simplified view of a basic deployment.

_static/images/nvp-enable-provider.png
BigSwich Vns.

Cisco VIC.

HidoNet

Name

Nicira livp

State

_images/region-overview.png
Region

Zone

Pod

Cluster

Zone

Zone

A region with multiple zones

_static/images/autoscale-config.png
Template: | RHEL62

Compute offering: [Small Instance

* Min nstances: (1

Scale Up Policy

* Durationin sec): 60

Counter Operator Trreshold
Linux User CPU - percentage [+ | greaterthan [
Response Time - microseconds oreater-than 1000
Scale Down Policy

* Duration(in sec): 60

Counter Operator Trreshold

T

= Hide

= Hide

nav.xhtml

 Table of Contents

 		Welcome to CloudStack Documentation !

 		Concepts and Terminology

 		What is Apache CloudStack?

 		What can Apache CloudStack do?

 		Multiple Hypervisor Support

 		Massively Scalable Infrastructure Management

 		Automatic Cloud Configuration Management

 		Graphical User Interface

 		API

 		AWS EC2 API Support

 		High Availability

 		Deployment Architecture Overview

 		Management Server Overview

 		Cloud Infrastructure Overview

 		Networking Overview

 		Cloud Infrastructure Concepts

 		Regions

 		Zones

 		Pods

 		Clusters

 		Hosts

 		Primary Storage

 		Secondary Storage

 		Physical Networks

 		Basic Zone Network Types

 		Basic Zone Guest IP Addresses

 		Advanced Zone Network Types

 		Advanced Zone Guest IP Addresses

 		Advanced Zone Public IP Addresses

 		System Reserved IP Addresses

 		CloudStack Terminology

 		About Regions

 		About Zones

 		About Pods

 		About Clusters

 		About Hosts

 		About Primary Storage

 		About Secondary Storage

 		About Physical Networks

 		The Nicira NVP Plugin

 		Introduction to the Nicira NVP Plugin

 		Features of the Nicira NVP Plugin

 		Configuring the Nicira NVP Plugin

 		Prerequisites

 		Zone Configuration

 		Enabling the service provider

 		Device Management

 		Network Offerings

 		Using the Nicira NVP plugin with VPC

 		Supported VPC features

 		VPC Offering with Nicira NVP

 		VPC Network Offerings

 		Troubleshooting the Nicira NVP Plugin

 		UUID References

 		Database tables

 		Revision History

 		The MidoNet Plugin

 		Introduction to the MidoNet Plugin

 		Features of the MidoNet Plugin

 		Using the MidoNet Plugin

 		Prerequisites

 		Enabling the MidoNet service provider via the UI

 		Enabling the MidoNet service provider via the API

 		Revision History

 		The VXLAN Plugin

 		System Requirements for VXLAN

 		Linux Distributions that meet the requirements

 		Check the capability of your system

 		Advanced: Build kernel and iproute2

 		Configure PRODUCT to use VXLAN Plugin

 		Configure hypervisor

 		Setup zone using VXLAN

 		The OVS Plugin

 		Introduction to the OVS Plugin

 		Features of the OVS Plugin

 		Configuring the OVS Plugin

 		Prerequisites

 		Zone Configuration

 		Agent Configuration

 		Enabling the service provider

 		Network Offerings

 		Using the OVS plugin with VPC

 		Revision History

 		IPv6 Support in CloudStack

 		Prerequisites and Guidelines

 		Limitations of IPv6 in CloudStack

 		Guest VM Configuration for DHCPv6

 		Configuring AutoScale without using NetScaler

 		What is AutoScaling?

 		Hypervisor support

 		Prerequisites

 		Configuration

 		Disabling and Enabling an AutoScale Configuration

 		Updating an AutoScale Configuration

 		Runtime Considerations

 		CloudStack Installation from Source for Developers

 		Prerequisites

 		On Ubuntu 12.04

 		On centOS 6.4

 		Installing from Source

 		Using the Simulator

 		Using DevCloud

 		Adding DevCloud as an Hypervisor

 		Building Packages

 		The CloudStack API

 		Testing the AWS API interface

 		Conclusions

 		Programmer Guide

 		The CloudStack API

 		Getting Started

 		Roles

 		API Reference Documentation

 		Making API Requests

 		Signing API Requests

 		How to sign an API call with Python

 		Enabling API Call Expiration

 		Limiting the Rate of API Requests

 		Configuring the API Request Rate

 		Limitations on API Throttling

 		API Responses

 		Maximum Result Pages Returned

 		Error Handling

 		Asynchronous Commands

 		Job Status

 		Example

 		Event Types

 		Time Zones

 		Plugins

 		Storage Plugins

 		Overview of How to Write a Storage Plugin

 		Implementing DataStoreDriver

 		Implementing DataStoreLifecycle

 		Implementing DataStoreProvider

 		Implementing VMSnapshotStrategy

 		Place the .jar File in the Right Directory

 		Edit Configuration Files

 		Minimum Required Interfaces

 		Third Party UI Plugins

 		How to Write a Plugin: Overview

 		How to Write a Plugin: Implementation Details

 		Allocators

 		Implementing a custom HostAllocator

 		HostAllocator Interface

 		Implementing a custom StoragePoolAllocator

 		StoragePoolAllocator Interface

 		Deploying CloudStack with Ansible

 		What is Ansible

 		Thereâ��s already Chef and Puppet, so whatâ��s the fuss about Ansible?

 		So letâ��s see something

 		Installing Ansible

 		Playbooks

 		Modules

 		Planning

 		MySQL

 		CloudStack Management server service

 		System VM Templates:

 		Bringing it all together

 		How is this example different from a production deployment?

 		Acknowledgements

_static/images/vxlan-physicalnetwork.png
© Addzore

At Resauroes Launch

PHYSIOAL NETWORK > PUELIC TRAFFIG> POD> GLEST TRAFFIC >

When adding an schanced zone, you need o set up ans or mare physicsl nebwarks. Esch i twork carresponds to 4 NI an the hyperisar, ach
Phisiosl network oan carry one o more tpes oF rafic,mith carlai restrotions on how they may be combined.

Drac and drop one or more traffic types onto each physicslnetwork.

Physicalnetwork name

Traffic Types e ———— R
Physical Network 1 Izctotion methos [VLAN v
y: J

Guest

Mensgement Pubi Storase
& @ ea @ e @ e
Physics network name
Storsse [Physical Network 2 Isolation method

Guest

@ e

Physicalnetworkname

Ganeel m

_static/images/plugin_intro.jpg

_images/plugin_intro.jpg

_static/images/vxlan-vniconfig.png
A nsresowces 5 Launen

PUBLICTRAFFIC> POD> GUESTTRAFFIC> STORAGE TRAFFIC >

‘Guest networktraffic i communication betveen end-user virtual machines. Specify a range of VLAN Ds {0 carry guest traffic for each
physicalnetwork.

PysicalNetwork 2

T e | —

Coneet “

_images/region-overview1.png
Region

Zone

Pod

Cluster

Zone

Zone

A region with multiple zones

_static/images/ovs-network-offering.png
© Add network offering

“Name: | gre_network
*Description: | gre isolation
Network Rate
M)
GuestType: [1soted v
Persistent :
Specity vLaN: O
vec: O
Supported Services: Static NAT
Brovider

Port Forwarding;

Port Forwarding
Provider.

Security Groups:
NetworkACL:

Virtual
Networking;

Virual

System Offering for | System Offering For Software Roul ¥

Router

Redundant router [
capabilty:

Supported Source | Per account v

NAT type:

_images/pod-overview.png
Pod

Cluster

Asimple pod

_static/images/nvp-vpc-offering-edit.png
1o BELECT * FROM cloud.vpc_offering_service map;

e O [) 5 i e 8 o | Awosze T

W wooengid sevie provider oreated

T Gelewsy VocVitualRouer 20121025 134620
3 1 ‘StaticNat VpcVitualRouter 2012-10-25 13:46:20
51 Dhop VpoVitualRouter 20121025 134620
7 1 NetworkACL VpcVitualRouter 2012-10-25 13:46:20
s 1 Voo VpoVitualRouter 20121025 134620
" 1 Dns. VpcVitualRouter 2012-10-25 13:46:20
13 1 ‘SourceNat VpcVitualRouter 2012-10-25 13:46:20
15 1 b VpcVitualRouter 2012-10-25 13:46:20
17 1 PortForwarding VpcVitualRouter 2012-10-25 13:46:20
19 1 UserData VpcVitualRouter 2012-10-25 13:46:20
21 1 Connectivity Nicirahvp. 20130301 21:40:01

_images/vxlan-physicalnetwork.png
© Addzore

At Resauroes Launch

PHYSIOAL NETWORK > PUELIC TRAFFIG> POD> GLEST TRAFFIC >

When adding an schanced zone, you need o set up ans or mare physicsl nebwarks. Esch i twork carresponds to 4 NI an the hyperisar, ach
Phisiosl network oan carry one o more tpes oF rafic,mith carlai restrotions on how they may be combined.

Drac and drop one or more traffic types onto each physicslnetwork.

Physicalnetwork name

Traffic Types e ———— R
Physical Network 1 Izctotion methos [VLAN v
y: J

Guest

Mensgement Pubi Storase
& @ ea @ e @ e
Physics network name
Storsse [Physical Network 2 Isolation method

Guest

@ e

Physicalnetworkname

Ganeel m

_static/images/nvp-physical-network-stt.png
Detais Compute and Storage | Prysial etwork Resources Systemvts
e st soton metnoc

e gt © enaves van

1CCD Gusst © Enaves s

_images/vxlan-vniconfig.png
A nsresowces 5 Launen

PUBLICTRAFFIC> POD> GUESTTRAFFIC> STORAGE TRAFFIC >

‘Guest networktraffic i communication betveen end-user virtual machines. Specify a range of VLAN Ds {0 carry guest traffic for each
physicalnetwork.

PysicalNetwork 2

T e | —

Coneet “

_images/ovs-network-offering.png
© Add network offering

“Name: | gre_network
*Description: | gre isolation
Network Rate
M)
GuestType: [1soted v
Persistent :
Specity vLaN: O
vec: O
Supported Services: Static NAT
Brovider

Port Forwarding;

Port Forwarding
Provider.

Security Groups:
NetworkACL:

Virtual
Networking;

Virual

System Offering for | System Offering For Software Roul ¥

Router

Redundant router [
capabilty:

Supported Source | Per account v

NAT type:

_images/autoscale-config.png
Template: | RHEL62

Compute offering: [Small Instance

* Min nstances: (1

Scale Up Policy

* Durationin sec): 60

Counter Operator Trreshold
Linux User CPU - percentage [+ | greaterthan [
Response Time - microseconds oreater-than 1000
Scale Down Policy

* Duration(in sec): 60

Counter Operator Trreshold

T

= Hide

= Hide

_static/images/ovs-physical-network-gre.png
Home > Infrastructure > Zones > z

 Refresh
Detais. Compute and Storage. Physical Network Resources System Vs
Name State. Isolation method Actions.
Physical Network 1

_images/nvp-physical-network-stt.png
Detais Compute and Storage | Prysial etwork Resources Systemvts
e st soton metnoc

e gt © enaves van

1CCD Gusst © Enaves s

_images/ovs-physical-network-gre.png
Home > Infrastructure > Zones > z

 Refresh
Detais. Compute and Storage. Physical Network Resources System Vs
Name State. Isolation method Actions.
Physical Network 1

_static/images/pod-overview.png
Pod

Cluster

Asimple pod

_images/zone-overview.png
Zone

Pod

Cluster

Secondary

Nested organization of a zone

_static/images/plugin2.jpg
) images
4 . PLUGINS
[Pluginjs
Plugin A
m scripts

_images/1000-foot-view.png
Virtualized Networking Storage
Servers

_static/images/infrastructure-overview.png
Zone

Pod

Cluster

Secondary

Nested organization of a zone

_static/images/basic-deployment.png
Management

Server

Machine 1

Hypervisor

Machine 2

Simplified view of a basic deployment.

_static/images/ovs-physical-network-gre-enable.png
Home - Infrastructure - Zones = 2 - Physical Netwiork 1 = Network Service Providers

Name state
Netscar @ Dsaves
Vitusi Router © enea
Neatwp @ saves
BoSuteh s @ Dsaved
Baremeta DHCP @ saves
Baremeta PXE @ Dsaved

I =0
CicovC @ Avsen
Midonet @ saves
Internal LB VM © enea
VPC Vet Router ® enea
s @ Dsaved
srx @ saves

_images/plugin2.jpg
) images
4 . PLUGINS
[Pluginjs
Plugin A
m scripts

_static/images/plugin3.jpg
¥ images
4). PLUGINS)
[Pugins —p- F1oszack puates -
